This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005278 Noncototients: n such that x - phi(x) = n has no solution.
(Formerly M4688)

%I M4688

%S 10,26,34,50,52,58,86,100,116,122,130,134,146,154,170,172,186,202,206,

%T 218,222,232,244,260,266,268,274,290,292,298,310,326,340,344,346,362,

%U 366,372,386,394,404,412,436,466,470,474,482,490,518,520

%N Noncototients: n such that x - phi(x) = n has no solution.

%C Browkin & Schinzel show that this sequence is infinite. - _Labos Elemer_, Dec 21 1999

%C If the strong Goldbach conjecture (every even number>6 is the sum of at least 2 distinct primes p and q) is true, sequence contains only even values. Since p*q-phi(p*q)=p+q-1 and then every odd number can be expressed as x-phi(x). - _Benoit Cloitre_, Mar 03 2002

%C Hee-sung Yang (Myerson link, problem 012.17d) asks if this sequence has a positive lower density. - _Charles R Greathouse IV_, Nov 04 2013

%D R. K. Guy, Unsolved Problems in Number Theory, B36.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe and Donovan Johnson, <a href="/A005278/b005278.txt">Table of n, a(n) for n = 1..10000</a> (first 963 terms from T. D. Noe)

%H J. Browkin and A. Schinzel, <a href="http://matwbn.icm.edu.pl/ksiazki/cm/cm68/cm6817.pdf">On integers not of the form n-phi(n)</a>, Colloq. Math., 68 (1995), 55-58.

%H A. Flammenkamp and F. Luca, <a href="http://matwbn.icm.edu.pl/ksiazki/cm/cm86/cm8616.pdf">Infinite families of noncototients</a>, Colloq. Math., 86 (2000), 37-41.

%H Gerry Myerson, <a href="http://wcnt.files.wordpress.com/2013/09/wcnt-problems-2012.pdf">Western Number Theory Problems</a>, 17 & 19 Dec 2012

%H C. Pomerance and H.-S. Yang, <a href="http://www.math.dartmouth.edu/~carlp/uupaper3.pdf">On untouchable numbers and related problems</a>, 2012

%H C. Pomerance and H.-S. Yang, <a href="http://www.math.dartmouth.edu/~carlp/uupaper6.pdf">Variant of a theorem of Erdos on the sum-of-proper-divisors function</a>, 2012

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Noncototient.html">Noncototient</a>

%t nmax = 520; cototientQ[n_?EvenQ] := (x = n; While[test = x - EulerPhi[x] == n ; Not[test || x > 2*nmax], x++]; test); cototientQ[n_?OddQ] = True; Select[Range[nmax], !cototientQ[#]&] (* _Jean-Fran├žois Alcover_, Jul 20 2011 *)

%o (PARI) lista(nn) = {v = vecsort(vector(nn^2, n, n - eulerphi(n)), ,8); for (n=1, nn, if (! vecsearch(v, n), print1(n, ", ")););} \\ _Michel Marcus_, Oct 03 2016

%Y Cf. A006093, A126887. Complement of A051953.

%K nonn,nice

%O 1,1

%A _N. J. A. Sloane_.

%E More terms from _Jud McCranie_, Jan 01 1997

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 23:55 EST 2016. Contains 278902 sequences.