login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005266 a(1)=3, b(n)=Product_{k=1..n} a(k), a(n+1)=largest prime factor of b(n)-1.
(Formerly M2247)
43
3, 2, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347568344407941 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Suggested by Euclid's proof that there are infinitely many primes.

a(15) requires completing the factorization: 13 * 67 * 14479 * 167197 * 924769 * 2688244927 * 888838110930755119 * 14372541055015356634061816579965403 * C211 where C211=6609133306626483634448666494646737799624640616060730302142187545405582531010390290502001156883917023202671554510633460047901459959959325342475132778791495112937562941066523907603281586796876335607258627832127303 [From Sean A. Irvine, Nov 10 2009]

REFERENCES

R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32.

LINKS

Table of n, a(n) for n=1..14.

R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science.

Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.

S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. (Annotated scanned copy)

MAPLE

with(numtheory):

a:= proc(n) option remember;

      `if`(n=1, 3, max(factorset(mul(a(i), i=1..n-1)-1)[]))

    end:

seq(a(n), n=1..10);  # Alois P. Heinz, Sep 26 2013

MATHEMATICA

a[0] = 3; a[n_] := a[n] = Block[{p = Times @@ (a[#] & /@ Range[0, n - 1]) - 1}, FactorInteger[p][[-1, 1]]]; Array[a, 13] (* Robert G. Wilson v, Sep 26 2013 *)

CROSSREFS

Cf. A000945, A000946, A005265.

Essentially the same as A084599.

Sequence in context: A085973 A248243 A005265 * A005267 A209269 A244823

Adjacent sequences:  A005263 A005264 A005265 * A005267 A005268 A005269

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(14) from Joe K. Crump (joecr(AT)carolina.rr.com), Jul 26, 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 10:29 EST 2018. Contains 299385 sequences. (Running on oeis4.)