This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005266 a(1)=3, b(n)=Product_{k=1..n} a(k), a(n+1)=largest prime factor of b(n)-1. (Formerly M2247) 43
 3, 2, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347568344407941 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Suggested by Euclid's proof that there are infinitely many primes. a(15) requires completing the factorization: 13 * 67 * 14479 * 167197 * 924769 * 2688244927 * 888838110930755119 * 14372541055015356634061816579965403 * C211 where C211=6609133306626483634448666494646737799624640616060730302142187545405582531010390290502001156883917023202671554510633460047901459959959325342475132778791495112937562941066523907603281586796876335607258627832127303 [From Sean A. Irvine, Nov 10 2009] REFERENCES R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Delta (Waukesha), Vol. 5, pp. 49-63, 1975. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. LINKS R. K. Guy and R. Nowakowski, Discovering primes with Euclid, Research Paper No. 260 (Nov 1974), The University of Calgary Department of Mathematics, Statistics and Computing Science. Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498. S. S. Wagstaff, Jr., Computing Euclid's primes, Bull. Institute Combin. Applications, 8 (1993), 23-32. (Annotated scanned copy) MAPLE with(numtheory): a:= proc(n) option remember;       `if`(n=1, 3, max(factorset(mul(a(i), i=1..n-1)-1)[]))     end: seq(a(n), n=1..10);  # Alois P. Heinz, Sep 26 2013 MATHEMATICA a[0] = 3; a[n_] := a[n] = Block[{p = Times @@ (a[#] & /@ Range[0, n - 1]) - 1}, FactorInteger[p][[-1, 1]]]; Array[a, 13] (* Robert G. Wilson v, Sep 26 2013 *) CROSSREFS Cf. A000945, A000946, A005265. Essentially the same as A084599. Sequence in context: A302854 A248243 A005265 * A005267 A209269 A244823 Adjacent sequences:  A005263 A005264 A005265 * A005267 A005268 A005269 KEYWORD nonn,nice AUTHOR EXTENSIONS a(14) from Joe K. Crump (joecr(AT)carolina.rr.com), Jul 26, 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 00:02 EST 2019. Contains 319184 sequences. (Running on oeis4.)