This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005262 a(n) = floor((7*2^(n+1)-9*n-10)/3). (Formerly M2793) 1
 1, 3, 9, 25, 59, 131, 277, 573, 1167, 2359, 4745, 9521, 19075, 38187, 76413, 152869, 305783, 611615, 1223281, 2446617, 4893291, 9786643, 19573349, 39146765, 78293599, 156587271, 313174617, 626349313, 1252698707, 2505397499, 5010795085, 10021590261 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Arises from Tower of Hanoi problem. REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Andy Liu and Steve Newman, Problem 1169, Crux Mathematicorum, 13 (No. 10, 1987), 328-332. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. L. J. Upton, Letter, Jan 1991 Problems and Solutions, Crux Mathematicorum, 13.10 (1987), 307, 328-332. (Annotated scanned copy) Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2). FORMULA G.f.: (1+x^2+4*x^3)/((1+x)*(1-2*x)*(1-x)^2) = (1+x^2+4*x^3)/(1-3*x+x^2+3*x^3-2*x^4). - Simon Plouffe (see MAPLE line) and Bruno Berselli, Jan 12 2012 a(n) = (28*2^n-18*n-(-1)^n-21)/6 = (7*2^(n+1)-9*n-10)/3-((-1)^n+1)/6. - Bruno Berselli, Jan 12 2012 MAPLE A005262:=-(1+z**2+4*z**3)/((z+1)*(2*z-1)*(z-1)**2); # [Simon Plouffe in his 1992 dissertation.] MATHEMATICA CoefficientList[Series[-(1+x^2+4*x^3)/((x+1)*(2*x-1)*(x-1)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 16 2012 *) LinearRecurrence[{3, -1, -3, 2}, {1, 3, 9, 25}, 40] (* Harvey P. Dale, Jan 01 2015 *) PROG (MAGMA)[Floor((7*2^(n+1)-9*n-10)/3): n in [0..30]]; // Vincenzo Librandi, Apr 16 2012 (PARI) a(n)=(14<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 17 07:44 EST 2018. Contains 317275 sequences. (Running on oeis4.)