login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005230 Stern's sequence: a(1) = 1, a(n+1) is the sum of the m preceding terms, where m*(m-1)/2 < n <= m*(m+1)/2 or equivalently m = ceiling((sqrt(8*n+1)-1)/2) = A002024(n).
(Formerly M0785)
8
1, 1, 2, 3, 6, 11, 20, 40, 77, 148, 285, 570, 1120, 2200, 4323, 8498, 16996, 33707, 66844, 132568, 262936, 521549, 1043098, 2077698, 4138400, 8243093, 16419342, 32706116, 65149296, 130298592, 260075635, 519108172, 1036138646, 2068138892, 4128034691 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A002487 is THE Stern's sequence!

The subsequence of primes in this partial sum begins: 2, 3, 11, a(41) = 262364233421, and no more through a(200). - Jonathan Vos Post, Feb 18 2010

The next few primes are a(568), a(657), a(17765), ... with no further primes below a(50000). - Charles R Greathouse IV, Sep 19 2011

Lim_{n->inf} a(n)/2^n = 0.11756264240558743281779408719593950494049225979176... - Jon E. Schoenfield, Dec 17 2016

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000 [extending prior submission by T. D. Noe]

Jaegug Bae, Sungjin Choi, A generalization of a subset-sum-distinct sequence, J. Korean Math. Soc. 40 (2003), no. 5, 757-768. MR1996839 (2004d:05198). See d_1(n).

G. Kreweras, Sur quelques problèmes relatifs au vote pondéré, [Some problems of weighted voting], Math. Sci. Humaines No. 84 (1983), 45-63.

M. A. Stern, Aufgaben, J. Reine Angew. Math., 18 (1838), 100.

Index entries for sequences related to Stern's sequences

Index entries for "core" sequences

FORMULA

Partial sums give Conway-Guy sequence A005318. Cf. A066777.

2*a(n*(n+1)/2 + 1) = a(n*(n+1)/2 + 2) for n>=1; limit_{n->infty} a(n+1)/a(n) = 2. - Paul D. Hanna, Aug 28 2006

MAPLE

A005230[1] := 1: n := 50: for k from 1 to n-1 do: A005230[k+1] := sum('A005230[j]', 'j'=k+1-(ceil((sqrt(8*k+1)-1)/2))..k): od: [seq(A005230[k], k=1..n)]; # UlrSchimke(AT)aol.com, Mar 16 2002

MATHEMATICA

Module[{lst={1, 1}, n=2}, While[n<40, AppendTo[lst, Total[ Take[lst, -Ceiling[ (Sqrt[8n+1]-1)/2]]]]; n++]; lst] (* Harvey P. Dale, Apr 02 2012 *)

PROG

(PARI) a(n)=if(n==1, 1, sum(k=1, ceil((sqrt(8*n-7)-1)/2), a(n-k))) \\ Paul D. Hanna, Aug 28 2006

(PARI) v=vector(10^3); v[1]=v[2]=1; v[3]=2; v[4]=3; u=vector(#v, i, if(i>4, 0, sum(j=1, i, v[j]))); for(i=5, #v, m=ceil((sqrt(8*i-7)-1)/2); v[i]=u[i-1]-u[i-m-1]; u[i]=u[i-1]+v[i]); u=0; v \\ Charles R Greathouse IV, Sep 19 2011

CROSSREFS

Cf. A002487.

Sequence in context: A141435 A096080 A143658 * A030037 A077078 A077079

Adjacent sequences:  A005227 A005228 A005229 * A005231 A005232 A005233

KEYWORD

core,easy,nonn,nice

AUTHOR

N. J. A. Sloane, Simon Plouffe

EXTENSIONS

Name corrected by Mario Szegedy, Sep 15 1996

Name revised by Ulrich Schimke (ulrschimke(AT)aol.com), Mar 16 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)