The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005217 Number of unlabeled unit interval graphs with n nodes. (Formerly M1186) 2
 1, 2, 4, 9, 21, 55, 151, 447, 1389, 4502, 15046, 51505, 179463, 634086, 2265014, 8163125, 29637903, 108282989, 397761507, 1468063369, 5441174511, 20242989728, 75566702558, 282959337159, 1062523000005, 4000108867555, 15095081362907, 57088782570433 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.7. R. W. Robinson, personal communication. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1980. LINKS R. W. Robinson, Table of n, a(n) for n = 1..190 Phil Hanlon, Counting interval graphs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383-426. FORMULA G.f. A(x) = x + 2x^2 + 4x^3 + 9x^4 + 21x^5 + ... satisfies 1 + A(x) = exp( Sum_{k >= 1} psi(x^k)/k ), where psi(x) = (1+2*x-sqrt(1-4*x)*sqrt(1-4*x^2))/(4*sqrt(1-4*x^2)) is the g.f. for A007123. For asymptotics, see for example Finch. MATHEMATICA m = 30; A[x_] = (-1 + Exp[Sum[psi[x^k]/k, {k, 1, m}]] /. psi[x_] -> (1 + 2 x - Sqrt[1 - 4 x] Sqrt[1 - 4 x^2])/(4 Sqrt[1 - 4 x^2])) + O[x]^m; CoefficientList[A[x], x] // Rest (* Jean-François Alcover, Oct 24 2019 *) CROSSREFS Sequence in context: A198304 A032129 A304914 * A148072 A001430 A148073 Adjacent sequences:  A005214 A005215 A005216 * A005218 A005219 A005220 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 23:46 EDT 2021. Contains 343143 sequences. (Running on oeis4.)