login
Number of trees of subsets of an n-set.
(Formerly M4844)
2

%I M4844 #34 Oct 27 2023 09:06:23

%S 0,1,12,61,240,841,2772,8821,27480,84481,257532,780781,2358720,

%T 7108921,21392292,64307941,193185960,580082161,1741295052,5225982301,

%U 15682141200,47054812201,141181213812,423577195861,1270798696440

%N Number of trees of subsets of an n-set.

%D F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H F. R. McMorris and T. Zaslavsky, <a href="/A005172/a005172.pdf">The number of cladistic characters</a>, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992.

%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6, -11, 6).

%F G.f.: x*(1 + 6*x) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). [corrected by _Ray Chandler_, Jun 26 2023]

%F First differences give A003063, 3^(n-1) - 2^n.

%p A005173:=-z*(1+6*z)/(z-1)/(3*z-1)/(2*z-1); # conjectured by _Simon Plouffe_ in his 1992 dissertation

%t CoefficientList[Series[x (1+6 x)/(1-x)/(1-2 x)/(1-3 x),{x,0,30}],x] (* _Harvey P. Dale_, Jul 03 2023 *)

%Y Cf. A003063.

%K nonn,easy

%O 1,3

%A _N. J. A. Sloane_

%E More terms from Larry Reeves (larryr(AT)acm.org), Feb 06 2001