login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005149 Sequence of coefficients arising in connection with a rapidly converging series for Pi.
(Formerly M5168)
4
1, -24, 852, -35744, 1645794, -80415216, 4094489992, -214888573248, 11542515402255, -631467591949480, 35063515239394764, -1971043639046131296, 111949770626330347638, -6414671157989386260432, 370360217892318010055832, -21525284426246779936288192 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

M. Newman and D. Shanks, On a sequence arising in series for pi, Math. Comp., 42 (1984), 199-217.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..100

Index entries for sequences related to the number Pi

Index entries for reversions of series

FORMULA

REVERT(A014103). a(n) = -(-1)^n * A195130(n).

EXAMPLE

x - 24*x^2 + 852*x^3 - 35744*x^4 + 1645794*x^5 - 80415216*x^6 + 4094489992*x^7 + ...

MATHEMATICA

CoefficientList[InverseSeries[Series[x*Product[(1+x^k)^24, {k, 1, 16}], {x, 0, 16}], x], x] // Rest (* Jean-Fran├žois Alcover, Mar 29 2011 *)

a[ n_] := If[ n < 1, 0, SeriesCoefficient[ InverseSeries[ Series[ q Product[ 1 + q^k, {k, n}]^24, {q, 0, n}], x], {x, 0, n}]] (* Michael Somos, Sep 11 2011 *)

PROG

(PARI) {a(n) = if( n<1, 0, polcoeff( serreverse( x * prod( k=1, n, 1 + x^k, 1 + x * O(x^n))^24), n))}

CROSSREFS

Cf. A005148, A014103, A195130.

Sequence in context: A078522 A208792 A195130 * A027411 A184281 A220176

Adjacent sequences:  A005146 A005147 A005148 * A005150 A005151 A005152

KEYWORD

sign,nice

AUTHOR

Simon Plouffe and N. J. A. Sloane.

EXTENSIONS

Formula and more terms from Michael Somos, Nov 24, 2001

Signs corrected Dec 24 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 22 18:51 EST 2014. Contains 249807 sequences.