This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005129 Theta series of {E_6}* lattice. (Formerly M5309) 2
 1, 0, 54, 72, 0, 432, 270, 0, 918, 720, 0, 2160, 936, 0, 2700, 2160, 0, 5184, 2214, 0, 5616, 3600, 0, 9504, 4590, 0, 9180, 6552, 0, 15120, 5184, 0, 14742, 10800, 0, 21600, 9360, 0, 19548, 12240, 0, 30240, 13500, 0, 28080, 17712, 0, 39744, 14760, 0, 32454 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). REFERENCES J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 127. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745. G. Nebe and N. J. A. Sloane, Home page for this lattice FORMULA Expansion of b(q)^3 + c(q)^3 / 3 in power of q where b(), c() are cubic AGM theta functions. Expansion of (eta(q)^3 / eta(q^3))^3 + 9 * (eta(q^3)^3 / eta(q))^3 in powers of q. EXAMPLE G.f. = 1 + 54*x^2 + 72*x^3 + 432*x^5 + 270*x^6 + 918*x^8 + 720*x^9 + 2160*x^11 + ... MATHEMATICA a[n_] := Module[{A = x*O[x]^n}, SeriesCoefficient[(QPochhammer[x+A]^3 / QPochhammer[x^3+A])^3 + 9*x*(QPochhammer[x^3+A]^3 / QPochhammer[x+A])^3, {x, 0, n}]]; Table[a[n], {n, 0, 80}] (* Jean-François Alcover, Nov 05 2015, adapted from 1st PARI script *) a[ n_] := SeriesCoefficient[ (QPochhammer[ q]^3 / QPochhammer[ q^3])^3 + 9 q (QPochhammer[ q^3]^3 /QPochhammer[ q])^3 , {q, 0, n}]; ( Michael Somos, Dec 28 2015 ) PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^3 + 9 * x * (eta(x^3 + A)^3 / eta(x + A))^3, n))}; /* Michael Somos, Feb 28 2012 */ (PARI) {a(n) = my(A, a1, p3); if( n<0, 0, A = x * O(x^n); a1 = sum( k=1, n, 6 * sumdiv(k, d, kronecker( d, 3)) * x^k, 1 + A); p3 = sum( k=1, n\3, -24 * sigma(k) * x^(3*k), 1 + A); polcoeff( (a1^3 + a1 * p3 - 4 * x * a1') / 2, n))}; /* Michael Somos, Feb 28 2012 */ (MAGMA) A := Basis( ModularForms( Gamma1(3), 3), 51); A[1]; /* Michael Somos, Dec 28 2015 */ CROSSREFS Cf. A004007 (E_6). Sequence in context: A025323 A157934 A281920 * A039532 A007244 A114817 Adjacent sequences:  A005126 A005127 A005128 * A005130 A005131 A005132 KEYWORD nonn,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 21:09 EDT 2018. Contains 313817 sequences. (Running on oeis4.)