login
Number of protruded partitions of n with largest part at most 10.
(Formerly M2571)
0

%I M2571 #20 Jun 09 2017 20:55:53

%S 1,3,6,13,25,50,94,178,328,601,1083,1940,3436,6047,10558,18326,31614,

%T 54265,92683,157626,266985,450580,757851,1270757,2124721,3543318,

%U 5894831,9785243,16210036,26802756,44240560,72906608,119969779

%N Number of protruded partitions of n with largest part at most 10.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D R. P. Stanley, Ordered structures and partitions, Memoirs of the Amer. Math. Soc., no. 119 (1972).

%H R. P. Stanley, <a href="http://www.fq.math.ca/Scanned/13-3/stanley.pdf">A Fibonacci lattice</a>, Fib. Quart., 13 (1975), 215-232.

%H R. P. Stanley, <a href="/A003277/a003277.pdf">Letter to N. J. A. Sloane, c. 1991</a>

%F G.f.: (1-x)^10/Product(1-x-x^i+x^(1+2*i), i=1..10)-1. - _Emeric Deutsch_, Dec 19 2004

%p G:=(1-x)^10/Product(1-x-x^i+x^(1+2*i),i=1..10)-1: Gser:=series(G,x=0,39): seq(coeff(Gser,x^n),n=1..37); # _Emeric Deutsch_, Dec 19 2004

%K nonn

%O 1,2

%A _N. J. A. Sloane_ and _Richard Stanley_

%E More terms from _Emeric Deutsch_, Dec 19 2004