This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005087 Number of distinct odd primes dividing n. 12
 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 0, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 0, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,15 COMMENTS a(n) = A001221(n) - 1 + n mod 2. - Reinhard Zumkeller, Sep 03 2003 LINKS Lei Zhou, Table of n, a(n) for n = 1..10000 FORMULA Additive with a(p^e) = 0 if p = 2, 1 otherwise. O.g.f. Sum_{p=odd prime} x^p/(1-x^p). - Geoffrey Critzer, Nov 06 2012 MATHEMATICA nn=100; a=Sum[x^p/(1-x^p), {p, Table[Prime[n], {n, 2, nn}]}]; Drop[CoefficientList[Series[a, {x, 0, nn}], x], 1] (* Geoffrey Critzer, Nov 06 2012 *) Array[PrimeNu[#] - Boole[EvenQ[#]] &, 102] (* Lei Zhou, Dec 03 2012 *) PROG (Sage) def A005087(n) : return len(filter(is_prime, divisors(n))) + n % 2 - 1 [A005087(n) for n in (1..80)]  # Peter Luschny, Feb 01 2012 (Haskell) a005087 n = a001221 n + n `mod` 2 - 1 -- Reinhard Zumkeller, Feb 28 2014 CROSSREFS Cf. A087436. Sequence in context: A282355 A199322 A284203 * A050332 A216658 A214020 Adjacent sequences:  A005084 A005085 A005086 * A005088 A005089 A005090 KEYWORD nonn AUTHOR EXTENSIONS More terms from Reinhard Zumkeller, Sep 03 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 25 03:10 EDT 2019. Contains 326318 sequences. (Running on oeis4.)