This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005079 Sum of squares of primes = 1 mod 4 dividing n. 7
 0, 0, 0, 0, 25, 0, 0, 0, 0, 25, 0, 0, 169, 0, 25, 0, 289, 0, 0, 25, 0, 0, 0, 0, 25, 169, 0, 0, 841, 25, 0, 0, 0, 289, 25, 0, 1369, 0, 169, 25, 1681, 0, 0, 0, 25, 0, 0, 0, 0, 25, 289, 169, 2809, 0, 25, 0, 0, 841, 0, 25, 3721, 0, 0, 0, 194, 0, 0, 289, 0, 25, 0, 0, 5329, 1369, 25, 0, 0, 169, 0, 25, 0, 1681, 0, 0, 314 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 FORMULA Additive with a(p^e) = p^2 if p = 1 (mod 4), 0 otherwise. a(n) = A005063(n) - A005083(n) - 4*A059841(n). - Antti Karttunen, Jul 11 2017 MATHEMATICA Array[DivisorSum[#, #^2 &, And[PrimeQ@ #, Mod[#, 4] == 1] &] &, 85] (* Michael De Vlieger, Jul 11 2017 *) PROG (Scheme) (define (A005079 n) (if (= 1 n) 0 (+ (if (= 1 (modulo (A020639 n) 4)) (A000290 (A020639 n)) 0) (A005079 (A028234 n))))) ;; Antti Karttunen, Jul 11 2017 (PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%4) == 1, p^2)); \\ Michel Marcus, Jul 11 2017 CROSSREFS Cf. A000290, A005063, A005078, A005080, A005081, A005083, A059841. Sequence in context: A067669 A068741 A255403 * A167624 A181614 A108321 Adjacent sequences:  A005076 A005077 A005078 * A005080 A005081 A005082 KEYWORD nonn AUTHOR EXTENSIONS More terms from Antti Karttunen, Jul 11 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 10:45 EDT 2019. Contains 328257 sequences. (Running on oeis4.)