login
A005067
Sum of cubes of odd primes dividing n.
7
0, 0, 27, 0, 125, 27, 343, 0, 27, 125, 1331, 27, 2197, 343, 152, 0, 4913, 27, 6859, 125, 370, 1331, 12167, 27, 125, 2197, 27, 343, 24389, 152, 29791, 0, 1358, 4913, 468, 27, 50653, 6859, 2224, 125, 68921, 370, 79507, 1331, 152, 12167, 103823, 27, 343, 125, 4940, 2197, 148877, 27, 1456, 343, 6886, 24389, 205379, 152
OFFSET
1,3
LINKS
Harvey P. Dale (terms 1 .. 1000) & Antti Karttunen, Table of n, a(n) for n = 1..10000
FORMULA
Additive with a(p^e) = 0 if p = 2, p^3 otherwise.
G.f.: Sum_{k>=2} prime(k)^3*x^prime(k)/(1 - x^prime(k)). - Ilya Gutkovskiy, Jan 06 2017
From Antti Karttunen, Jul 10 2017: (Start)
a(1) = 0; after which, for even n: a(n) = a(n/2), for odd n: a(n) = A020639(n)^3 + a(A028234(n)).
a(n) = A005064(A000265(n)).
(End)
MATHEMATICA
Join[{0}, Table[Total[Select[Transpose[FactorInteger[n]][[1]], OddQ]^3], {n, 2, 50}]] (* Harvey P. Dale, Jun 09 2016 *)
Array[DivisorSum[#, #^3 &, And[PrimeQ@ #, OddQ@ #] &] &, 60] (* Michael De Vlieger, Jul 11 2017 *)
PROG
(Scheme) (define (A005067 n) (cond ((= 1 n) 0) ((even? n) (A005067 (/ n 2))) (else (+ (A000578 (A020639 n)) (A005067 (A028234 n)))))) ;; Antti Karttunen, Jul 10 2017
(PARI) a(n) = my(f=factor(n)); sum(k=1, #f~, if (((p=f[k, 1])%2) == 1, p^3)); \\ Michel Marcus, Jul 11 2017
KEYWORD
nonn
EXTENSIONS
More terms from Antti Karttunen, Jul 10 2017
STATUS
approved