login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005046 Number of partitions of a 2n-set into even blocks.
(Formerly M3640)
25

%I M3640

%S 1,1,4,31,379,6556,150349,4373461,156297964,6698486371,337789490599,

%T 19738202807236,1319703681935929,99896787342523081,

%U 8484301665702298804,802221679220975886631,83877585692383961052499,9640193854278691671399436,1211499609050804749310115589

%N Number of partitions of a 2n-set into even blocks.

%D Louis Comtet, Analyse Combinatoire Tome II, pages 61-62.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 225, 3rd line of table.

%D CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

%D L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 150.

%D L. Lovasz, Combinatorial Problems and Exercises, North-Holland, 1993, pp. 15.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe and Alois P. Heinz, <a href="/A005046/b005046.txt">Table of n, a(n) for n = 0..250</a> (first 51 terms from T. D. Noe)

%H C. Ahmed, P. Martin, V. Mazorchuk, <a href="http://arxiv.org/abs/1503.06718">On the number of principal ideals in d-tonal partition monoids</a>, arXiv preprint arXiv:1503.06718 [math.CO], 2015.

%H Steven R. Finch, <a href="/A000296/a000296.pdf">Moments of sums</a>, April 23, 2004 [Cached copy, with permission of the author]

%H J. Riordan, <a href="/A001850/a001850_2.pdf">Letter, Jul 06 1978</a>

%H J. Shallit, <a href="/A005046/a005046.pdf">Letter to N. J. A. Sloane</a>, Jan 13 1976.

%H Kruchinin Vladimir Victorovich, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.

%F E.g.f.: exp(cosh(x) - 1) (or exp(cos(x)-1) ).

%F a(n) = Sum_{k=1..n} binomial(2*n-1, 2*k-1)*a(n-k). - _Vladeta Jovovic_, Apr 10 2003

%F a(n) = sum(1/k!*sum(binomial(k,m)/(2^(m-1))*sum(binomial(m,j)*(2*j-m)^(2*n),j,0,m/2)*(-1)^(k-m),m,0,k),k,1,2*n), n>0. - _Vladimir Kruchinin_, Aug 05 2010

%F a(n) = Sum_{k=1..2*n} Sum_{i=0..k-1} ((i-k)^(2*n)*binomial(2*k,i)*(-1)^i)/(2^(k-1)*k!), n>0, a(0)=1. - _Vladimir Kruchinin_, Oct 04 2012

%F E.g.f.: E(0)-1, where E(k) = 2 + (cosh(x)-1)/(2*k + 1 - (cosh(x)-1)/E(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Dec 23 2013

%F a(n) = Sum_{k=0..2*n} binomial(2*n,k)*(-1)^k*S_k(1/2)*S_{2*n-k}( 1/2), where S_n(x) is the n-th Bell polynomial (or exponential polynomial). - _Emanuele Munarini_, Sep 10 2017

%p a:= proc(n) option remember;

%p `if`(n=0, 1, add(binomial(2*n-1, 2*k-1) *a(n-k), k=1..n))

%p end:

%p seq(a(n), n=0..30); # _Alois P. Heinz_, Apr 12 2011

%p # second Maple program:

%p a := n -> add(binomial(2*n,k)*(-1)^k*BellB(k,1/2)*BellB(2*n-k,1/2), k=0..2*n):

%p seq(a(n), n=0..18); # after _Emanuele Munarini_,_Peter Luschny_, Sep 10 2017

%t NestList[ Factor[ D[#, {x, 2}]] &, Exp[ Cosh[x] - 1], 16] /. x -> 0

%t a[0] = 1; a[n_] := Sum[Sum[(i-k)^(2*n)*Binomial[2*k, i]*(-1)^i, {i, 0, k-1}]/(2^(k-1)*k!), {k, 1, 2*n}]; Table[a[n], {n, 0, 30}] (* _Jean-Fran├žois Alcover_, Apr 07 2015, after _Vladimir Kruchinin_ *)

%t Table[Sum[BellY[2 n, k, 1 - Mod[Range[2 n], 2]], {k, 0, 2 n}], {n, 0, 20}] (* _Vladimir Reshetnikov_, Nov 09 2016 *)

%t With[{nn=40},Abs[Take[CoefficientList[Series[Exp[Cos[x]-1],{x,0,nn}],x] Range[0,nn]!,{1,-1,2}]]] (* _Harvey P. Dale_, Feb 06 2017 *)

%o (Maxima) a(n):= sum(1/k!*sum(binomial(k,m)/(2^(m-1))*sum(binomial(m,j) *(2*j-m)^(2*n), j,0,m/2)*(-1)^(k-m), m,0,k), k,1,2*n); \\ _Vladimir Kruchinin_, Aug 05 2010

%o (Maxima) a(n):=sum(sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(i),i,0,k-1)/(2^(k-1)*k!),k,1,2*n); \\ _Vladimir Kruchinin_, Oct 04 2012

%o (Python)

%o from sympy.core.cache import cacheit

%o from sympy import binomial

%o @cacheit

%o def a(n): return 1 if n==0 else sum([binomial(2*n - 1, 2*k - 1)*a(n - k) for k in range(1, n + 1)])

%o print(map(a, xrange(31))) # _Indranil Ghosh_, Sep 11 2017, after Maple program by _Alois P. Heinz_

%Y See A156289 for the table of partitions of a 2n-set into k even blocks.

%Y For partitions into odd blocks see A003724 and A136630.

%Y Cf. A000110, A003724.

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 19:13 EDT 2019. Contains 323576 sequences. (Running on oeis4.)