login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005015 a(n) = 11*2^n. 11
11, 22, 44, 88, 176, 352, 704, 1408, 2816, 5632, 11264, 22528, 45056, 90112, 180224, 360448, 720896, 1441792, 2883584, 5767168, 11534336, 23068672, 46137344, 92274688, 184549376, 369098752, 738197504, 1476395008, 2952790016, 5905580032, 11811160064 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005

11 times powers of 2. - Omar E. Pol, Dec 16 2008

A144472=-1,2,9,13,31,57,.... a(n)=A144472(n+1)+A144472(n+2). Also a(n)=A144472(n+3)-A144472(n+1). A144472(n+1) is a Jacobsthal sequence from 2 and 9: A144472(n+3)=A144472(n+2)+2*A144472(n+1). Note a(n) mod 9=period 6:repeat 2,4,8,7,5,1=A153130(n+1). - Paul Curtz, Jan 06 2009

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (2).

FORMULA

G.f.: 11/(1-2*x).

a(n) = 2*a(n-1), n>0; a(0)=11. - Philippe Deléham, Nov 23 2008

a(n) = A000079(n)*11. - _Omar E. Pol, Dec 16 2008

MATHEMATICA

11*2^Range[0, 60] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)

NestList[2#&, 11, 30] (* Harvey P. Dale, Jun 11 2021 *)

PROG

(Magma) [11*2^n: n in [0..40]]; // Vincenzo Librandi, Aug 14 2011

(PARI) a(n)=11<<n \\ Charles R Greathouse IV, Oct 07 2015

CROSSREFS

Row sums of (10, 1)-Pascal triangle A093645.

Sequence in context: A122613 A115768 A242958 * A070069 A178664 A292926

Adjacent sequences: A005012 A005013 A005014 * A005016 A005017 A005018

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 09:33 EST 2022. Contains 358608 sequences. (Running on oeis4.)