%I #37 Jan 28 2024 14:59:29
%S 0,5,9,13,17,22,26,30,34,39,43,47,51,56,60,64,68,73,77,81,85,89,94,98,
%T 102,106,111,115,119,123,128,132,136,140,145,149,153,157,161,166,170,
%U 174,178,183,187,191,195,200
%N a(n) = ceiling(n*phi^3), where phi is the golden ratio, A001622.
%C This sequence, beginning at 5, gives the positions of 1 in the infinite binary word A188187; complement of A188188. - _Clark Kimberling_, Mar 23 2011
%H Ivan Panchenko, <a href="/A004958/b004958.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = A004956(2*n) + n. - _Robert Israel_, Sep 25 2019
%p phi:= (sqrt(5)+1)/2:
%p seq(ceil(2*n*phi)+n, n=0..100); # _Robert Israel_, Sep 25 2019
%t r=5^(1/2)); k=1;
%t t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r],{n,1,220}] (*A188187*)
%t Flatten[Position[t,0]] (* A188188 *)
%t Flatten[Position[t,1]] (* A004958 *)
%t With[{c=GoldenRatio^3},Ceiling[c*Range[0,50]]] (* _Harvey P. Dale_, Jan 28 2024 *)
%o (Python)
%o from math import isqrt
%o def A004958(n): return (isqrt(20*n**2)>>1)+(n<<1)+1 if n else 0 # _Chai Wah Wu_, Aug 17 2022
%Y Cf. A001622, A004956, A188014, A188187, A188188.
%K nonn
%O 0,2
%A _N. J. A. Sloane_