This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004831 Numbers that are the sum of at most 2 nonzero 4th powers. 5
 0, 1, 2, 16, 17, 32, 81, 82, 97, 162, 256, 257, 272, 337, 512, 625, 626, 641, 706, 881, 1250, 1296, 1297, 1312, 1377, 1552, 1921, 2401, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4096, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6561, 6562, 6577, 6642 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Apart from 0, 1, 2, there are no three consecutive terms up to 10^16. The first two consecutive terms not of the form n^4, n^4+1 are 3502321 = 25^4 + 42^4, 3502322 = 17^4 + 43^4. - Charles R Greathouse IV, Oct 17 2017 LINKS T. D. Noe, Table of n, a(n) for n = 1..1000 MATHEMATICA Reap[For[n = 0, n < 10000, n++, If[MatchQ[ PowersRepresentations[n, 2, 4], {{_, _}, ___}], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2017 *) PROG (Haskell) a004831 n = a004831_list !! (n-1) a004831_list = [x ^ 4 + y ^ 4 | x <- [0..], y <- [0..x]] -- Reinhard Zumkeller, Jul 15 2013 (PARI) is(n)=#thue(thueinit(z^4+1), n) \\ Ralf Stephan, Oct 18 2013 (PARI) list(lim)=my(v=List(), t); for(m=0, sqrtnint(lim\=1, 4), for(n=0, min(sqrtnint(lim-m^4, 4), m), listput(v, n^4+m^4))); Set(v) \\ Charles R Greathouse IV, Sep 28 2015 CROSSREFS Subsequences include A000583 and A002645. Sequence in context: A261617 A075376 A032935 * A217307 A282408 A282838 Adjacent sequences:  A004828 A004829 A004830 * A004832 A004833 A004834 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.