login
Numbers that are the sum of 11 positive 11th powers.
31

%I #21 Dec 01 2020 14:32:04

%S 11,2058,4105,6152,8199,10246,12293,14340,16387,18434,20481,22528,

%T 177157,179204,181251,183298,185345,187392,189439,191486,193533,

%U 195580,197627,354303,356350,358397,360444,362491,364538,366585,368632,370679,372726,531449,533496,535543

%N Numbers that are the sum of 11 positive 11th powers.

%C As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020

%H David A. Corneth, <a href="/A004822/b004822.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)

%e From _David A. Corneth_, Aug 01 2020: (Start)

%e 460807606 is in the sequence as 460807606 = 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 1^11 + 3^11 + 3^11 + 5^11 + 5^11 + 6^11.

%e 795925198 is in the sequence as 795925198 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 4^11 + 4^11 + 5^11 + 6^11 + 6^11.

%e 1504395992 is in the sequence as 1504395992 = 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 6^11 + 6^11 + 6^11 + 6^11. (End)

%t M = 6347807907; m = M^(1/11) // Ceiling; Reap[

%t For[a = 1, a <= m, a++, For[b = a, b <= m, b++, For[c = b, c <= m, c++,

%t For[d = c, d <= m, d++, For[e = d, e <= m, e++, For[f = e, f <= m, f++,

%t For[g = f, g <= m, g++, For[h = g, h <= m, h++, For[i = h, i <= m, i++,

%t For[j = i, j <= m, j++, For[k = j, k <= m, k++,

%t s = a^11+b^11+c^11+d^11+e^11+f^11+g^11+h^11+i^11+j^11+k^11;

%t If[s <= M, Sow[s]]]]]]]]]]]]]][[2, 1]] // Union (* _Jean-François Alcover_, Dec 01 2020 *)

%Y Cf. A008455.

%Y A###### (x, y): Numbers that are the form of x nonzero y-th powers.

%Y Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).

%K nonn,easy

%O 1,1

%A _N. J. A. Sloane_