login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004793 a(1)=1, a(2)=3; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression. 18
1, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33, 37, 39, 40, 42, 82, 84, 85, 87, 91, 93, 94, 96, 109, 111, 112, 114, 118, 120, 121, 123, 244, 246, 247, 249, 253, 255, 256, 258, 271, 273, 274, 276, 280, 282, 283, 285, 325, 327, 328, 330, 334, 336, 337, 339, 352, 354 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..58.

F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.

Eric Weisstein's World of Mathematics, Nonarithmetic Progression Sequence

Index entries related to non-averaging sequences

FORMULA

a(n) = (3-n)/2 + 2*floor(n/2) + sum(k=1, n-1, 3^A007814(k))/2 = A003278(n) + [n is even], proved by Lawrence Sze, following a conjecture by Ralf Stephan.

a(n) = b(n-1), with b(0)=1, b(2n)=3b(n)-2-3[n odd], b(2n+1)=3b(n)-3[n odd].

MATHEMATICA

Select[Range[1000], MatchQ[IntegerDigits[#-1, 3], {(0|1)..., 0|2}]&] (* Jean-Fran├žois Alcover, Jan 13 2019, after Tanya Khovanova in A186776 *)

PROG

(PARI) v[1]=1; v[2]=3; for(n=3, 1000, f=2; m=v[n-1]+1; while(1, forstep(k=n-1, 1, -1, if(v[k]<(m+1)/2, f=1; break); for(l=1, k-1, if(m-v[k]==v[k]-v[l], f=0; break)); if(f<2, break)); if(!f, m=m+1; f=2); if(f==1, break)); v[n]=m) \\ Ralf Stephan

(PARI) a(n)=if(n<1, 1, if(n%2==0, 3*a(n/2)-2-3*((n/2)%2), 3*a((n-1)/2)-3*(((n-1)/2)%2))) \\ Ralf Stephan

CROSSREFS

Equals A186776(n)+1, A033160(n)-1, A033163(n)-2.

Cf. A092482, A185256.

Row 1 of array in A093682.

Sequence in context: A322457 A137951 A082694 * A031132 A322165 A057477

Adjacent sequences:  A004790 A004791 A004792 * A004794 A004795 A004796

KEYWORD

nonn,changed

AUTHOR

N. J. A. Sloane, Clark Kimberling

EXTENSIONS

Rechecked by David W. Wilson, Jun 04 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 00:02 EST 2019. Contains 319184 sequences. (Running on oeis4.)