This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004759 Binary expansion starts 111. 8
 7, 14, 15, 28, 29, 30, 31, 56, 57, 58, 59, 60, 61, 62, 63, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is the minimal recursive sequence such that a(1)=7, A007814(a(n))= A007814(n) and A010060(a(n))=A010060(n). - Vladimir Shevelev, Apr 23 2009 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..4095 FORMULA a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 6[n==0]. a(n) = n + 6 * 2^floor(log_2(n)) = A004758(n) + A053644(n). a(n+1) = min{m > a(n): A007814(m) = A007814(n+1) and A010060(m) = A010060(n+1)}. a(2^k) - a(2^k-1) = A103204(k+2), k >= 1. - Vladimir Shevelev, Apr 23 2009 a(2^m+k) = 7*2^m + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016 EXAMPLE 30 in binary is 11110, so 30 is in sequence. MATHEMATICA w = {1, 1, 1}; Select[Range[5, 244], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 10 2016 *) Sort[FromDigits[#, 2]&/@(Flatten[Table[Join[{1, 1, 1}, #]&/@Tuples[{1, 0}, n], {n, 0, 5}], 1])] (* Harvey P. Dale, Sep 01 2016 *) PROG (PARI) a(n)=n+6*2^floor(log(n)/log(2)) (Haskell) import Data.List (transpose) a004759 n = a004759_list !! (n-1) a004759_list = 7 : concat (transpose [zs, map (+ 1) zs])                    where zs = map (* 2) a004759_list -- Reinhard Zumkeller, Dec 03 2015 CROSSREFS Cf. A004754 (10), A004755 (11), A004756 (100), A004757 (101), A004758 (110). Cf. A004760, A053644, A062050, A076877. Cf. A007814, A010060, A103204, A159559, A159560, A159615, A159619, A159629, A159698. -Vladimir Shevelev, Apr 23 2009 Sequence in context: A069137 A141164 A004781 * A062056 A173024 A115770 Adjacent sequences:  A004756 A004757 A004758 * A004760 A004761 A004762 KEYWORD nonn,easy AUTHOR EXTENSIONS Edited by Ralf Stephan, Oct 12 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 23:29 EST 2019. Contains 320381 sequences. (Running on oeis4.)