login
A004756
Binary expansion starts 100.
9
4, 8, 9, 16, 17, 18, 19, 32, 33, 34, 35, 36, 37, 38, 39, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153
OFFSET
1,1
FORMULA
a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + 3*[n==0].
a(n) = n + 3 * 2^floor(log_2(n)) = A004755(n) + A053644(n).
a(2^m+k) = 2^(m+2) + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 07 2016
EXAMPLE
18 in binary is 10010, so 18 is in sequence.
MATHEMATICA
Select[Range[4, 153], Take[IntegerDigits[#, 2], 3] == {1, 0, 0} &] (* Michael De Vlieger, Aug 07 2016 *)
PROG
(PARI) a(n)=n+3*2^floor(log(n)/log(2))
(Haskell)
import Data.List (transpose)
a004756 n = a004756_list !! (n-1)
a004756_list = 4 : concat (transpose [zs, map (+ 1) zs])
where zs = map (* 2) a004756_list
-- Reinhard Zumkeller, Dec 04 2015
(Python)
def A004756(n): return n+(3<<n.bit_length()-1) # Chai Wah Wu, Jul 13 2022
CROSSREFS
Cf. A004754 (10), A004755 (11), A004757 (101), A004758 (110), A004759 (111).
Sequence in context: A141066 A018196 A072103 * A237882 A153034 A106840
KEYWORD
nonn,easy,base
EXTENSIONS
Edited by Ralf Stephan, Oct 12 2003
STATUS
approved