login
Numbers whose binary expansion does not contain 001.
8

%I #24 Jul 05 2024 18:33:01

%S 0,1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,20,21,22,23,24,26,27,28,29,30,

%T 31,32,40,42,43,44,45,46,47,48,52,53,54,55,56,58,59,60,61,62,63,64,80,

%U 84,85,86,87,88,90,91,92,93,94,95,96,104,106,107,108,109,110

%N Numbers whose binary expansion does not contain 001.

%H Reinhard Zumkeller, <a href="/A004745/b004745.txt">Table of n, a(n) for n = 1..10000</a>

%H Robert Baillie and Thomas Schmelzer, <a href="https://library.wolfram.com/infocenter/MathSource/7166/">Summing Kempner's Curious (Slowly-Convergent) Series</a>, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.

%H <a href="/index/Ar#2-automatic">Index entries for 2-automatic sequences</a>.

%F Sum_{n>=2} 1/a(n) = 5.808784664093998434778841785199192904637860758506854276321167162567685504669... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - _Amiram Eldar_, Feb 13 2022

%t Select[Range[0, 110], ! StringContainsQ[IntegerString[#, 2], "001"] &] (* _Amiram Eldar_, Feb 13 2022 *)

%t Select[Range[0,120],SequenceCount[IntegerDigits[#,2],{0,0,1}]==0&] (* _Harvey P. Dale_, Jul 05 2024 *)

%o (PARI) is(n)=n=binary(n);for(i=4,#n,if(n[i]&&!n[i-1]&&!n[i-2], return(0))); 1 \\ _Charles R Greathouse IV_, Mar 29 2013

%o (PARI) is(n)=while(n>8, if(bitand(n,7)==1, return(0)); n>>=1); 1 \\ _Charles R Greathouse IV_, Feb 11 2017

%o (Haskell)

%o a004745 n = a004745_list !! (n-1)

%o a004745_list = filter f [0..] where

%o f x = x < 4 || x `mod` 8 /= 1 && f (x `div` 2)

%o -- _Reinhard Zumkeller_, Jul 01 2013

%Y Cf. A007088; A003796 (no 000), A004746 (no 010), A004744 (no 011), A003754 (no 100), A004742 (no 101), A004743 (no 110), A003726 (no 111).

%K nonn,base,easy

%O 1,3

%A _N. J. A. Sloane_