login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004641 Fixed under 0 -> 10, 1 -> 100. 9
1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Partial sums: A088462. - Reinhard Zumkeller, Dec 05 2009

Write w(n) = a(n) for n >= 1. Each w(n) is generated by w(i) for exactly one i <= n; let g(n) = i. Each w(i) generates a single 1, in a word (10 or 100) that starts with 1. Therefore, g(n) is the number of 1s among w(1), ..., w(n), so that g = A088462. That is, this sequence is generated by its partial sums. - Clark Kimberling, May 25 2011

LINKS

T. D. Noe, Table of n, a(n) for n = 1..8119

Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), arXiv:1710.01498 [math.NT], 2017.

Wieb Bosma, Michel Dekking, Wolfgang Steiner, A remarkable sequence related to Pi and sqrt(2), Integers, Electronic Journal of Combinatorial Number Theory 18A (2018), #A4.

N. G. de Bruijn, Sequences of zeros and ones generated by special production rules, Nederl. Akad. Wetensch. Indag. Math. 43 (1981), no. 1, 27-37. Reprinted in Physics of Quasicrystals, ed. P. J. Steinhardt et al., p. 664.

C. J. Glasby, S. P. Glasby, F. Pleijel, Worms by number, Proc. Roy. Soc. B, Proc. Biol. Sci. 275 (1647) (2008) 2071-2076.

Index entries for characteristic functions

FORMULA

a(n) = floor(n*(sqrt(2) - 1) + sqrt(1/2)) - floor((n - 1)*(sqrt(2) - 1) + sqrt(1/2)) (from the de Bruijn reference). - Peter J. Taylor, Mar 26 2015

From Jianing Song, Jan 02 2019: (Start)

a(n) = A001030(n) - 1.

a(n) = A006337(n-9) - 1 = A159684(n-10) for n >= 10. (End)

MAPLE

P(0):= (1, 0): P(1):= (1, 0, 0):

((P~)@@6)([1]);

# in Maple 12 or earlier, comment the above line and uncomment the following:

# (curry(map, P)@@6)([1]); # Robert Israel, Mar 26 2015

MATHEMATICA

Nest[ Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0}}] &, {1}, 5] (* Robert G. Wilson v, May 25 2011 *)

PROG

(MAGMA) [Floor(n*(Sqrt(2) - 1) + Sqrt(1/2)) - Floor((n - 1)*(Sqrt(2) - 1) + Sqrt(1/2)): n in [0..100]]; // Vincenzo Librandi, Mar 27 2015

CROSSREFS

Equals A001030 - 1. Essentially the same as A006337 - 1 and A159684.

Characteristic function of A086377.

Cf. A081477.

Sequence in context: A189298 A288375 A121559 * A266441 A266672 A266070

Adjacent sequences:  A004638 A004639 A004640 * A004642 A004643 A004644

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)