OFFSET
1,2
COMMENTS
From Michael De Vlieger, Nov 12 2014: (Start)
The next term contains a nondecimal digit: see the link below for an expanded table of squares with the nondecimal digits.
Perfect squares in base 12 must end in one of {0, 1, 4, 9}, similar to perfect squares in base 16.
As n increases, a(n) cycles through the end digits in the order {0, 1, 4, 9, 4, 1}.
(End)
LINKS
Michael De Vlieger, Squares written in base 12, a(n) for n = 1..1728 (duodecimal 1000)
EXAMPLE
a(8) = 8 * 8 = decimal 64 = 5 dozen 4 = "54".
a(15) = 15 * 15 = decimal 225 = 1 gross 6 dozen 9 (or 1 * (12^2) + 6 * (12^1) + 9) = "169".
MATHEMATICA
a004630[n_Integer] := BaseForm[n^2, 12]; a004630/@Range[12^3] (* Michael De Vlieger, Nov 12 2014 *)
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
STATUS
approved