login
Tersum n + 4.
2

%I #21 Dec 27 2023 08:31:34

%S 4,5,3,7,8,6,1,2,0,13,14,12,16,17,15,10,11,9,22,23,21,25,26,24,19,20,

%T 18,31,32,30,34,35,33,28,29,27,40,41,39,43,44,42,37,38,36,49,50,48,52,

%U 53,51,46,47,45,58,59,57,61

%N Tersum n + 4.

%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,1,-1).

%F Tersum m + n: write m and n in base 3 and add mod 3 with no carries; e.g., 5 + 8 = "21" + "22" = "10" = 1.

%t LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {4, 5, 3, 7, 8, 6, 1, 2, 0, 13, 14}, 80] (* _Jinyuan Wang_, Mar 10 2020 *)

%o (Python)

%o def tersum(a, b):

%o c, pow3 = 0, 1

%o while a + b > 0:

%o a, ra = divmod(a, 3)

%o b, rb = divmod(b, 3)

%o c, pow3 = c + pow3*((ra+rb)%3), pow3*3

%o return c

%o def a(n): return tersum(n, 4)

%o print([a(n) for n in range(58)]) # _Michael S. Branicky_, Apr 05 2021

%o (PARI) my(table=[4,4,1,4,4,1,-5,-5,-8]); a(n) = n + table[n%9+1]; \\ _Kevin Ryde_, Apr 05 2021

%Y Cf. A004489 (tersum array).

%K nonn,easy

%O 0,1

%A _N. J. A. Sloane_