login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004403 Expansion of 1/theta_3(q)^2 in powers of q. 3
1, -4, 12, -32, 76, -168, 352, -704, 1356, -2532, 4600, -8160, 14176, -24168, 40512, -66880, 108876, -174984, 277932, -436640, 679032, -1046016, 1597088, -2418240, 3632992, -5417708, 8022840, -11802176, 17252928, -25070568, 36223424, -52053760, 74414412 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Euler transform of period 4 sequence [ -4,6,-4,2,...].

REFERENCES

A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

A. Cayley, A memoir on the transformation of elliptic functions, Philosophical Transactions of the Royal Society of London (1874): 397-456; Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, included in Vol. 9. [Annotated scan of pages 126-129]

FORMULA

Expansion of (Sum x^(n^2), n = -inf .. inf )^(-2).

Expansion of elliptic function pi / 2K in powers of q.

G.f.: 1 / (Sum_{k} x^k^2)^2 = (Product_{k>0} (1 + x^(2k))^2 /((1-x^k)(1 + x^k)^3))^2.

a(n) = (-1)^n * A001934(n).

MATHEMATICA

CoefficientList[Series[1/EllipticTheta[3, 0, q]^2, {q, 0, 32}], q] (* Jean-François Alcover, Jul 18 2011 *)

QP = QPochhammer; s = QP[q^2]^2/QP[-q]^4 + O[q]^40; CoefficientList[s, q] (* Jean-François Alcover, Nov 30 2015, adapted from PARI *)

PROG

(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 / eta(-x + A)^4, n))} /* Michael Somos, Feb 09 2006 */

(Julia) # JacobiTheta3 is defined in A000122.

A004403List(len) = JacobiTheta3(len, -2)

A004403List(33) |> println # Peter Luschny, Mar 12 2018

CROSSREFS

Cf. A001934, A015128.

Sequence in context: A127811 A138517 A001934 * A084566 A208903 A079769

Adjacent sequences:  A004400 A004401 A004402 * A004404 A004405 A004406

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 06:53 EDT 2019. Contains 323386 sequences. (Running on oeis4.)