This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004402 Expansion of (Sum_{n=-inf..inf} x^(n^2))^(-1). 5
 1, -2, 4, -8, 14, -24, 40, -64, 100, -154, 232, -344, 504, -728, 1040, -1472, 2062, -2864, 3948, -5400, 7336, -9904, 13288, -17728, 23528, -31066, 40824, -53408, 69568, -90248, 116624, -150144, 192612, -246256, 313808 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Taylor series for 1/theta_3. Absolute values are coefficients in Taylor series for 1/theta_4. Euler transform of period-4 sequence [-2,3,-2,1,...]. REFERENCES J. R. Newman, The World of Mathematics, Simon and Schuster, 1956, Vol. I p. 372. LINKS Robert Israel, Table of n, a(n) for n = 0..10000 G. Almkvist, Asymptotic formulas and generalized Dedekind sums, Exper. Math., 7 (No. 4, 1998), pp. 343-359. J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, p. 103. FORMULA Ramanujan gave an asymptotic formula (see Almkvist). G.f.: 1/Product_{m>0} ((1-q^(2m))(1+q^(2m-1))^2) = 1/theta_3(q). a(n) = (-1)^n * A015128(n). MAPLE S:=series(1/JacobiTheta3(0, x), x, 101): seq(coeff(S, x, j), j=0..100); # Robert Israel, Dec 29 2015 MATHEMATICA terms = 35; 1/EllipticTheta[3, 0, x] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Jul 05 2017 *) PROG (PARI) a(n)=if(n<0, 0, polcoeff(1/sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n)), n)) (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( eta(x+A)^2*eta(x^4+A)^2/eta(x^2+A)^5, n))} (Julia) # JacobiTheta3 is defined in A000122. A004402List(len) = JacobiTheta3(len, -1) A004402List(35) |> println # Peter Luschny, Mar 12 2018 CROSSREFS See A015128 for a version without signs. Sequence in context: A280947 A069252 A069253 * A015128 A208605 A123655 Adjacent sequences:  A004399 A004400 A004401 * A004403 A004404 A004405 KEYWORD sign AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 04:26 EDT 2019. Contains 324183 sequences. (Running on oeis4.)