The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004396 One even number followed by two odd numbers. 32
 0, 1, 1, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 23, 23, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 31, 31, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 41, 42, 43, 43, 44, 45, 45, 46, 47, 47 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Except for n=4, maximal number of points on a chunk of triangular grid of edge length n with no 2 points on same row, column, or diagonal. See Problem 252 in The Inquisitive Problem Solver. - R. K. Guy [Comment revised by N. J. A. Sloane, Jul 01 2016] Dimension of the space of weight 2n+4 cusp forms for Gamma_0(3). Starting at 3, 3, ..., gives maximal number of acute angles in an n-gon. - Takenov Nurdin (takenov_vert(AT)e-mail.ru), Mar 04 2003 Let b(1) = b(2) = 1, b(k) = b(k-1)+( b(k-2) reduced (mod 2)); then a(n) = b(n-1). - Benoit Cloitre, Aug 14 2002 (1+x+x^2+x^3 ) / ( (1-x^2)*(1-x^3)) is the Poincaré series [or Poincare series] (or Molien series) for Sigma_4. a(n) = A096777(n+1) - A096777(n) for n > 0. - Reinhard Zumkeller, Jul 09 2004 For n > 6, maximum number of knight moves to reach any square from the corner of an (n-2) X (n-2) chessboard. Likewise for n > 6, the maximum number of knight moves to reach any square from the middle of an (2n-5) X (2n-5) chessboard. - Ralf Stephan, Sep 15 2004 A transform of the Jacobsthal numbers A001045 under the mapping of g.f.s g(x)->g(x/(1+x^2)). - Paul Barry, Jan 16 2005 a(A032766(n)) = n. - Reinhard Zumkeller, Oct 30 2009 For n >= 1; a(n) = number of successive terms of A040001 that add to n; or length of n-th term of A028359. - Jaroslav Krizek, Mar 28 2010 For n > 0: a(n) = length of n-th row in A082870. - Reinhard Zumkeller, Apr 13 2014 Also the independence number of the n-triangular honeycomb queen graph. - Eric W. Weisstein, Jul 14 2017 REFERENCES A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 246. J. Kurschak, Hungarian Mathematical Olympiads, 1976, Mir, Moscow. Paul Vanderlind, Richard K. Guy, and Loren C. Larson, The Inquisitive Problem Solver, MAA, 2002. See Problem 252. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 Art of Problem Solving Forum, Ordered triples choosing - From Joel B. Lewis, May 21 2009 J. Choi, N. Pippenger, Counting the Angels and Devils in Escher's Circle Limit IV, arXiv preprint arXiv:1310.1357 [math.CO], 2013. C. L. Mallows and N. J. A. Sloane, Weight enumerators of self-orthogonal codes, Discrete Math., 9 (1974), 391-400 (see proof of Theorem 1). Gabriel Nivasch and Eyal Lev, Nonattacking Queens on a Triangle, Mathematics Magazine, Vol. 78, No. 5 (Dec., 2005), pp. 399-403. See Eq. (4). John A. Pelesko, Generalizing the Conway-Hofstadter \$10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5. William A. Stein, Dimensions of the spaces S_k(Gamma_0(N)) William A. Stein, The modular forms database Eric Weisstein's World of Mathematics, Independence Number Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1). FORMULA G.f.: (x+x^3)/((1-x)*(1-x^3)). a(n) = floor( (2*n + 1)/3 ). a(n) = a(n-1) + (1/2)*((-1)^floor((4*n+2)/3) + 1), a(0) = 0. - Mario Catalani (mario.catalani(AT)unito.it), Oct 20 2003 a(n) = 2n/3 - cos(2*Pi*n/3 + Pi/3)/3 + sqrt(3)*sin(2*Pi*n/3 + Pi/3)/9. - Paul Barry, Mar 18 2004 From Paul Barry, Jan 16 2005: (Start) G.f.: x*(1+x^2)/(1-x-x^3+x^4). a(n) = a(n-1) + a(n-3) - a(n-4) for n>3. a(n) = Sum_{k = 0..n} binomial(n-k-1, k)*(-1)^k*A001045(n-2k). (End) a(n) = (A006369(n) - (A006369(n) mod 2) * (-1)^(n mod 3)) / (1 + A006369(n) mod 2). - Reinhard Zumkeller, Jan 23 2005 a(n) = A004773(n) - A004523(n). - Reinhard Zumkeller, Aug 29 2005 a(n) = floor(n/3) + ceiling(n/3). - Jonathan Vos Post, Mar 19 2006 a(n+1) = A008620(2n). - Philippe Deléham, Dec 14 2006 a(n) = floor((2*n^2+4*n+2)/(3*n+4)). - Gary Detlefs, Jul 13 2010 Euler transform of length 4 sequence [1, 1, 1, -1]. - Michael Somos, Jul 03 2014 a(n) = n - floor((n+1)/3). - Wesley Ivan Hurt, Sep 17 2015 a(n) = A092200(n) - floor((n+5)/3). - Filip Zaludek, Oct 27 2016 a(n) = -a(-n) for all n in Z. - Michael Somos, Oct 30 2016 EXAMPLE G.f. = x + x^2 + 2*x^3 + 3*x^4 + 3*x^5 + 4*x^6 + 5*x^7 + 5*x^8 + 6*x^9 + 7*x^10 + ... MAPLE A004396:=n->floor((2*n + 1)/3); seq(A004396(n), n=0..100); # Wesley Ivan Hurt, Nov 30 2013 MATHEMATICA Table[Floor[(2 n + 1)/3], {n, 0, 75}] With[{n = 50}, Riffle[Range[0, n], Range[1, n, 2], {3, -1, 3}]] (* Harvey P. Dale, May 14 2015 *) CoefficientList[Series[(x + x^3)/((1 - x) (1 - x^3)), {x, 0, 71}], x] (* Michael De Vlieger, Oct 27 2016 *) a[ n_] := Quotient[2 n + 1, 3]; (* Michael Somos, Oct 23 2017 ) a[ n_] := Sign[n] SeriesCoefficient[ (x + x^3) / ((1 - x) (1 - x^3)), {x, 0, Abs@n}]; (* Michael Somos, Oct 23 2017 *) LinearRecurrence[{1, 0, 1, -1}, {1, 1, 2, 3}, {0, 20}] (* Eric W. Weisstein, Jul 14 2017 *) PROG (MAGMA) [(Floor(n/3) + Ceiling(n/3)): n in [0..70]]; // Vincenzo Librandi, Aug 07 2011 (PARI) a(n)=2*n\/3 \\ Charles R Greathouse IV, Apr 17 2012 (Haskell) a004396 n = a004396_list !! n a004396_list = 0 : 1 : 1 : map (+ 2) a004396_list -- Reinhard Zumkeller, Nov 06 2012 (Sage) def a(n) : return( dimension_cusp_forms( Gamma0(3), 2*n+4) ); # Michael Somos, Jul 03 2014 CROSSREFS Cf. A001045, A002620, A004523, A004773, A006369, A008620, A032766, A040001, A082870, A096777. Sequence in context: A156689 A168052 A131737 * A066481 A248103 A121928 Adjacent sequences:  A004393 A004394 A004395 * A004397 A004398 A004399 KEYWORD nonn,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 07:29 EST 2021. Contains 340460 sequences. (Running on oeis4.)