login
A004331
Binomial coefficient C(4n,n-1).
12
1, 8, 66, 560, 4845, 42504, 376740, 3365856, 30260340, 273438880, 2481256778, 22595200368, 206379406870, 1889912732400, 17345898649800, 159518999862720, 1469568786235308, 13559593014190944, 125288932441604200
OFFSET
1,2
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
G.f.: (g^2-g)/(4-3*g) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
With an offset of 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005810 and g(x) is the o.g.f. for A002293. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(4*n + k,n). Cf. A262977 (k = -1), A005810 (k = 0), A052203 (k = 1), A257633 (k = 2) and A224274 (k = 3). - Peter Bala, Nov 04 2015
MAPLE
seq(binomial(4*n - 1, n), n = 0..20);
MATHEMATICA
a[n_] := Binomial[4*n, n - 1]; Array[a, 19] (* Amiram Eldar, May 09 2020 *)
PROG
(PARI) vector(30, n, binomial(4*n, n-1)) \\ Altug Alkan, Nov 05 2015
KEYWORD
nonn,easy
STATUS
approved