login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004212 Shifts one place left under 3rd-order binomial transform.
(Formerly M3557)
24

%I M3557 #77 Jul 15 2021 10:21:57

%S 1,1,4,19,109,742,5815,51193,498118,5296321,60987817,754940848,

%T 9983845261,140329768789,2087182244308,32725315072135,539118388883449,

%U 9304591246975030,167804098493079547,3155000165773280893

%N Shifts one place left under 3rd-order binomial transform.

%C Equals the eigensequence of triangle A027465, the cube of Pascal's triangle. - _Gary W. Adamson_, Apr 10 2009

%C Length-n restricted growth strings (RGS) [s(0),s(1),...,s(n-1)] where s(k)<=F(k)+3 where F(0)=0 and F(k+1)=s(k+1) if s(k+1)-s(k)=3, otherwise F(k+1)=F(k); see example and Fxtbook link. - _Joerg Arndt_, Apr 30 2011

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A004212/b004212.txt">Table of n, a(n) for n = 0..200</a>

%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 17.3.5, pp. 366-368

%H I. M. Gessel, <a href="http://arxiv.org/abs/math.CO/0108121">Applications of the classical umbral calculus</a>. arXiv:math/0108121v3 [math.CO], 2001.

%H Adalbert Kerber, <a href="http://dx.doi.org/10.1016/0012-365X(78)90163-2">A matrix of combinatorial numbers related to the symmetric groups</a>, Discrete Math., 21 (1978), 319-321.

%H A. Kerber, <a href="/A004211/a004211.pdf">A matrix of combinatorial numbers related to the symmetric groups<</a>, Discrete Math., 21 (1978), 319-321. [Annotated scanned copy]

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F a_n = Sum_{k=0..n} 3^(n-k)*Stirling2(n, k). - _Emeric Deutsch_, Feb 11 2002

%F E.g.f.: exp((exp(3*x)-1)/3).

%F O.g.f. A(x) satisfies A'(x)/A(x) = e^(3*x).

%F E.g.f.: exp(int(t=0..x, exp(3*t))). - _Joerg Arndt_, Apr 30 2011

%F O.g.f.: Sum_{k>=0} x^k/Product_{j=1..k} (1-3*j*x). - _Joerg Arndt_, Apr 30 2011

%F Hankel transform is A000178(n)*3^C(n+1,2). - _Paul Barry_, Mar 31 2008

%F Define f_1(x), f_2(x), ... such that f_1(x)=e^x, f_{n+1}(x) = (d/dx)(x*f_n(x)), for n=2,3,.... Then a(n) = e^(-1/2)*3^{n-1}*f_n(1/3). - _Milan Janjic_, May 30 2008

%F a(n) = the upper left term in M^n, M = the following infinite square production matrix:

%F 1, 3, 0, 0, 0, ...

%F 1, 1, 3, 0, 0, ...

%F 1, 2, 1, 3, 0, ...

%F 1, 3, 3, 1, 3, ...

%F ... (in which a diagonal of (3,3,3,...) is appended to the right of Pascal's triangle). - _Gary W. Adamson_, Jul 29 2011

%F G.f. satisfies A(x) = 1+x/(1-3*x)*A(x/(1-3*x)). a(n) = Sum_{k=1..n} 3^(n-k)*binomial(n-1,k-1)*a(k-1), n > 0, a(0)=1. - _Vladimir Kruchinin_, Nov 28 2011 [corrected by _Ilya Gutkovskiy_, May 02 2019]

%F From _Peter Bala_, May 16 2012: (Start)

%F Recurrence equation: a(n+1) = Sum_{k = 0..n} 3^(n-k)*C(n,k)*a(k). Written umbrally this is a(n+1) = (a+3)^n (expand the binomial and replace a^k with a(k)). More generally, a*f(a) = f(a+3) holds umbrally for any polynomial f(x). An inductive argument then establishes the umbral recurrence a*(a-3)*(a-6)*...*(a-3*(n-1)) = 1 with a(0) = 1. Compare with the Bell numbers B(n) = A000110(n), which satisfy the umbral recurrence B*(B-1)*...*(B-(n-1)) = 1 with B(0) = 1.

%F Touchard's congruence holds for prime p not equal to 3: a(p+k) = (a(k) + a(k+1)) (mod p) for k = 0,1,2,... (adapt the proof of Theorem 10.1 in Gessel). In particular, a(p) = 2 (mod p) for prime p <> 3.

%F (End)

%F G.f.: (G(0) - 1)/(x-1) where G(k) = 1 - 1/(1-x*3*k)/(1-x/(x-1/G(k+1) )); (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Jan 16 2013

%F G.f.: T(0)/(1-x), where T(k) = 1 - 3*x^2*(k+1)/( 3*x^2*(k+1) - (1-x-3*x*k)*(1-4*x-3*x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Oct 19 2013

%F a(n) ~ 3^n * n^n * exp(n/LambertW(3*n) - 1/3 - n) / (sqrt(1 + LambertW(3*n)) * LambertW(3*n)^n). - _Vaclav Kotesovec_, Jul 15 2021

%e Restricted growth strings: a(0)=1 corresponds to the empty string, a(1)=1 to [0],

%e a(2)=3 to [00], [01], [02], and [03], a(3) = 19 to

%e RGS F

%e 01: [ 0 0 0 ] [ 0 0 0 ]

%e 02: [ 0 0 1 ] [ 0 0 0 ]

%e 03: [ 0 0 2 ] [ 0 0 0 ]

%e 04: [ 0 0 3 ] [ 0 0 3 ]

%e 05: [ 0 1 0 ] [ 0 0 0 ]

%e 06: [ 0 1 1 ] [ 0 0 0 ]

%e 07: [ 0 1 2 ] [ 0 0 0 ]

%e 08: [ 0 1 3 ] [ 0 0 3 ]

%e 09: [ 0 2 0 ] [ 0 0 0 ]

%e 10: [ 0 2 1 ] [ 0 0 0 ]

%e 11: [ 0 2 2 ] [ 0 0 0 ]

%e 12: [ 0 2 3 ] [ 0 0 3 ]

%e 13: [ 0 3 0 ] [ 0 3 3 ]

%e 14: [ 0 3 1 ] [ 0 3 3 ]

%e 15: [ 0 3 2 ] [ 0 3 3 ]

%e 16: [ 0 3 3 ] [ 0 3 3 ]

%e 17: [ 0 3 4 ] [ 0 3 3 ]

%e 18: [ 0 3 5 ] [ 0 3 3 ]

%e 19: [ 0 3 6 ] [ 0 3 6 ]

%e - _Joerg Arndt_, Apr 30 2011

%t Table[Sum[StirlingS2[n,k] 3^(-k+n),{k,n}],{n,20}] (* _Vincenzo Librandi_, May 21 2012 *)

%t Table[3^n BellB[n, 1/3], {n, 0, 20}] (* _Vladimir Reshetnikov_, Oct 20 2015 *)

%o (PARI) x='x+O('x^66); /* that many terms */

%o egf=exp(intformal(exp(3*x))); /* = 1 + x + 2*x^2 + 19/6*x^3 + 109/24*x^4 + ... */

%o /* egf=exp(1/3*(exp(3*x)-1)) */ /* alternative computation */

%o Vec(serlaplace(egf)) /* show terms */ /* _Joerg Arndt_, Apr 30 2011 */

%o (Maxima)

%o a(n):=if n=0 then 1 else sum(3^(n-k)*binomial(n-1,k-1)*a(k-1),k,1,n); /* _Vladimir Kruchinin_, Nov 28 2011 */

%Y Cf. A075498 (row sums).

%Y Cf. A027465. - _Gary W. Adamson_, Apr 10 2009

%Y Cf. A004211 (RGS where s(k)<=F(k)+2), A004213 (s(k)<=F(k)+4), A005011 (s(k)<=F(k)+5), A000110 (s(k)<=F(k)+1). - _Joerg Arndt_, Apr 30 2011

%Y Cf. A009235.

%K nonn,easy,eigen

%O 0,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 22:18 EDT 2024. Contains 371782 sequences. (Running on oeis4.)