This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004208 a(n) = n * (2*n - 1)!! - Sum_{k=0..n-1} a(k) * (2*n - 2*k - 1)!!. (Formerly M3985) 4
 1, 5, 37, 353, 4081, 55205, 854197, 14876033, 288018721, 6138913925, 142882295557, 3606682364513, 98158402127761, 2865624738913445, 89338394736560917, 2962542872271918593, 104128401379446177601 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n+1) is the moment of order n for the probability density function rho(x) = Pi^(-3/2)*sqrt(x/2)*exp(x/2)/(1-erf^2(I*sqrt(x/2))) on the interval 0..infinity, with erf the error function and I=sqrt(-1). [Groux Roland, Nov 10 2009] REFERENCES E. W. Bowen, Letter to N. J. A. Sloane, Aug 27 1976. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..300 E. W. Bowen & N. J. A. Sloane, Correspondence, 1976 Colin K, Is it possible to make Mathematica reformulate an expression in a more numerically stable way?. see second answer by whuber. FORMULA a(n) = (1/2) * A000698(n+1), n>0. x+5/2*x^2+37/3*x^3+353/4*x^4+4081/5*x^5+55205/6*x^6+... = log(1+x+3*x^2+15*x^3+105*x^4+945*x^5+10395*x^6+...) where [1, 1, 3, 15, 105, 945, 10395, ...] = A001147(double factorials). - Philippe Deléham, Jun 20 2006 G.f.: ( 1/Q(0) -1 )/x where Q(k) = 1 - x*(2*k+1)/(1 - x*(2*k+4)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 19 2013 G.f.: 2/x/G(0) - 1/x, where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - 1 + 2*x*(2*k+4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 31 2013 G.f.: 1/(2*x^2) -1/(2*x) - G(0)/(2*x^2), where G(k)= 1 - x*(k+1)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Aug 15 2013 L.g.f.: log(1/(1 - x/(1 - 2*x/(1 - 3*x/(1 - 4*x/(1 - 5*x/(1 - ...))))))) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 10 2017 MAPLE df := proc(n) product(2*k-1, k=1..n) end: a[1] := 1: for n from 2 to 30 do a[n] := n*df(n)-sum(a[k]*df(n-k), k=1..n-1) od; MATHEMATICA CoefficientList[Series[D[Log[Sum[(2n-1)!!x^n, {n, 0, 17}]], x], {x, 0, 16}], x] [From Wouter Meeussen, Mar 21 2009] a[ n_] := If[ n < 1, 0, n Coefficient[ Normal[ Series[ Log @ Erfc @ Sqrt @ x, {x, Infinity, n}] + x + Log[ Sqrt [Pi x]]] /. x -> -1 / 2 / x, x, n]] (* Michael Somos, May 28 2012 *) PROG (PARI) {a(n) = if( n<1, 0, n++; polcoeff( 1 - 1 / (2 * sum( k=0, n, x^k * (2*k)! / (2^k * k!), x * O(x^n))), n))} /* Michael Somos, May 28 2012 */ CROSSREFS Cf. A000698. Sequence in context: A177395 A258296 A197713 * A198077 A208813 A112698 Adjacent sequences:  A004205 A004206 A004207 * A004209 A004210 A004211 KEYWORD nonn AUTHOR N. J. A. Sloane, following a suggestion from E. W. Bowen, Aug 27 1976 EXTENSIONS Description corrected by Jeremy Magland (magland(AT)math.byu.edu), Jan 07 2000 More terms from Emeric Deutsch, Dec 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 18:06 EST 2019. Contains 319349 sequences. (Running on oeis4.)