login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004189 a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1. 30

%I

%S 0,1,10,99,980,9701,96030,950599,9409960,93149001,922080050,

%T 9127651499,90354434940,894416697901,8853812544070,87643708742799,

%U 867583274883920,8588189040096401,85014307126080090,841554882220704499

%N a(n) = 10*a(n-1) - a(n-2); a(0) = 0, a(1) = 1.

%C Indices of square numbers which are also generalized pentagonal numbers.

%C If t(n) denotes the n-th triangular number, t(A105038(n))=a(n)*a(n+1). - Robert Phillips (bobanne(AT)bellsouth.net), May 25 2008

%C The n:th term is a(n)=((5+Sqrt(24))^n-(5-Sqrt(24))^n)/(2*Sqrt(24)). - _Sture Sjöstedt_, May 31 2009

%C Number of units of a(n) belongs to a periodic sequence: 0, 1, 0, 9. We conclude that a(n) and a(n+4) have the same number of units. - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), Sep 05 2009

%C For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 10's along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - _John M. Campbell_, Jul 08 2011

%C a(n) and b(n) (A001079) are the non-negative proper solutions of the Pell equation b(n)^2 - 6*(2*a(n))^2 = +1. See the cross reference to A001079 below. - _Wolfdieter Lang_, Jun 26 2013

%H Vincenzo Librandi, <a href="/A004189/b004189.txt">Table of n, a(n) for n = 0..1000</a>

%H E. I. Emerson, <a href="http://www.fq.math.ca/Scanned/7-3/emerson.pdf">Recurrent Sequences in the Equation DQ^2=R^2+N</a>, Fib. Quart., 7 (1969), pps. 231-242.

%H D. Fortin, <a href="http://ijpam.eu/contents/2012-77-1/11/11.pdf">B-spline Toeplitz inverse under corner perturbations</a>, International Journal of Pure and Applied Mathematics, Volume 77, No. 1, 2012, 107-118. - From _N. J. A. Sloane_, Oct 22 2012

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=10, q=-1.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>

%H W. Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=12.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index to sequences with linear recurrences with constant coefficients</a>, signature (10,-1).

%F a(n) = S(2*n-1, sqrt(12))/sqrt(12) = S(n-1, 10); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(-1, x) := 0.

%F a(n)={[(5+2*sqrt(6))^n - (5-2*sqrt(6))^n]}/4*sqrt(6). G.f.(x)=x/(1-10*x+x^2). - Barry E. Williams, Aug 18 2000

%F a(-n) = -a(n). - _Michael Somos_, Sep 05 2006

%F a(n) = 9*(a(n-1)+a(n-2))-a(n-3), a(n) = 11*(a(n-1)-a(n-2))+a(n-3). a(n)=10*a(n-1)-a(n-2). - Mohamed Bouhamida (bhmd95(AT)yahoo.fr), May 26 2007

%F a(n+1) = Sum_{k, 0<=k<=n} A101950(n,k)*9^k. - _Philippe Deléham_, Feb 10 2012

%F Product {n >= 1} (1 + 1/a(n)) = 1/2*(2 + sqrt(6)). - _Peter Bala_, Dec 23 2012

%F Product {n >= 2} (1 - 1/a(n)) = 1/5*(2 + sqrt(6)). - _Peter Bala_, Dec 23 2012

%F a(n) = (A054320(n-1) + A072256(n))/2. - _Richard R. Forberg_, Nov 21 2013

%F a(2*n - 1) = A046173(n).

%e a(2)=10 and (3(-8)^2-(-8))/2=10^2, a(3)=99 and (3(81)^2-(81))/2=99^2. - _Michael Somos_, Sep 05 2006

%e G.f. = x + 10*x^2 + 99*x^3 + 980*x^4 + 9701*x^5 + 96030*x^6 + ...

%t lst={}; Do[AppendTo[lst, GegenbauerC[n, 1, 5]], {n, 0, 8^2}]; lst (* _Vladimir Joseph Stephan Orlovsky_, Sep 11 2008] *)

%o (PARI) {a(n) = subst(poltchebi(n+1) - 5*poltchebi(n), 'x, 5) / 24}; /* _Michael Somos_, Sep 05 2006 */

%o (Sage) [lucas_number1(n,10,1) for n in range(22)] # _Zerinvary Lajos_, Jun 25 2008

%o (MAGMA) [ n eq 1 select 0 else n eq 2 select 1 else 10*Self(n-1)-Self(n-2): n in [1..20] ]; // _Vincenzo Librandi_, Aug 19 2011

%Y Cf. A000027, A001906, A001353, A004254, A001109, A004187, A001090, A018913.

%Y A001079(n) = sqrt{24*[a(n)^2]+1}, that is a(n) = sqrt((A001079(n)^2-1)/24).

%Y Cf. A046173.

%K easy,nonn

%O 0,3

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 22 18:41 EST 2014. Contains 249807 sequences.