%I #25 Mar 01 2023 11:00:57
%S 1,1,-1,0,1,-2,0,1,0,1,-3,0,5,0,-3,0,1,-4,0,14,0,-28,0,17,0,1,-5,0,30,
%T 0,-126,0,255,0,-155,0,1,-6,0,55,0,-396,0,1683,0,-3410,0,2073,0,1,-7,
%U 0,91,0,-1001,0,7293,0,-31031,0,62881,0,-38227,0,1,-8,0,140,0
%N Triangle of coefficients of Euler polynomials E_2n(x) (exponents in decreasing order).
%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.
%H T. D. Noe, <a href="/A004173/b004173.txt">Rows n=0..50 of triangle, flattened</a>
%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
%H H. Pan and Z. W. Sun, <a href="http://arXiv.org/abs/math.NT/0407363">New identities involving Bernoulli and Euler polynomials</a>, arXiv:math/0407363 [math.NT], 2004.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPolynomial.html">Euler Polynomial</a>.
%t Flatten[Table[Reverse @ CoefficientList[EulerE[2n, x], x] , {n, 0, 8}]] (* _Jean-François Alcover_, Jul 21 2011 *)
%Y Cf. A060082
%K sign,tabf,nice
%O 0,6
%A _N. J. A. Sloane_, corrected Jan 09 2007