login
Triangle of coefficients of Euler polynomials E_2n(x) (exponents in increasing order).
5

%I #25 Mar 01 2023 11:00:50

%S 1,0,-1,1,0,1,0,-2,1,0,-3,0,5,0,-3,1,0,17,0,-28,0,14,0,-4,1,0,-155,0,

%T 255,0,-126,0,30,0,-5,1,0,2073,0,-3410,0,1683,0,-396,0,55,0,-6,1,0,

%U -38227,0,62881,0,-31031,0,7293,0,-1001,0,91,0,-7,1,0,929569,0

%N Triangle of coefficients of Euler polynomials E_2n(x) (exponents in increasing order).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 809.

%H T. D. Noe, <a href="/A004172/b004172.txt">Rows n = 0..50 of triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPolynomial.html">Euler Polynomial</a>.

%t Flatten[Table[CoefficientList[EulerE[2n, x], x], {n, 0, 8}]] (* _Jean-François Alcover_, Jul 21 2011 *)

%Y Cf. A060083.

%K sign,tabl,nice

%O 0,8

%A _N. J. A. Sloane_