login
Reversals of Fibonacci numbers (sorted).
4

%I #20 Jun 02 2019 13:44:30

%S 0,1,1,2,3,5,8,12,16,31,43,55,98,332,441,773,789,1814,4852,5676,7951,

%T 11771,40238,52057,64901,75682,86364,118713,393121,814691,922415,

%U 5647229,7882075,8754253,9038712,9626431

%N Reversals of Fibonacci numbers (sorted).

%C The smallest Fibonacci number with 1, 2, 3,... trailing zeros is F(15), F(150), F(750), F(7500), F(75000),.... This provides an idea of how many digits may be "lost" by reversal. - _R. J. Mathar_, Mar 11 2013

%H Reinhard Zumkeller, <a href="/A004170/b004170.txt">Table of n, a(n) for n = 0..1000</a>

%t Sort[FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[0,40]]] (* _Harvey P. Dale_, Jun 17 2011 *)

%t IntegerReverse[Fibonacci[Range[0,40]]]//Sort (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jun 02 2019 *)

%o (Haskell)

%o import Data.Set (fromList, deleteFindMin, insert)

%o a004170 n = a004170_list !! n

%o a004170_list = 0 : 1 : f (fromList us) vs where

%o f s (x:xs) = m : f (insert x s') xs

%o where (m,s') = deleteFindMin s

%o (us,vs) = splitAt 120 $ drop 2 a004091_list

%o -- _Reinhard Zumkeller_, Mar 09 2013

%Y Cf. A000045, A004091.

%Y Cf. A214855, A004086.

%K nonn,base,easy,nice

%O 0,4

%A _N. J. A. Sloane_