login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004080 Least k such that H(k) >= n, where H(k) is the harmonic number sum_{i=1..k} 1/i. 28
0, 1, 4, 11, 31, 83, 227, 616, 1674, 4550, 12367, 33617, 91380, 248397, 675214, 1835421, 4989191, 13562027, 36865412, 100210581, 272400600, 740461601, 2012783315, 5471312310, 14872568831, 40427833596, 109894245429, 298723530401, 812014744422 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

Bruno Rizzi and Cristina Scagliarini: I numeri armonici. Periodico di matematiche, "Mathesis", pp. 17-58, 1986, numbers 1-2 [From Vincenzo Librandi, Jan 05 2009]

W. Sierpiński, Sur les decompositions de nombres rationnels, Oeuvres Choisies, Académie Polonaise des Sciences, Warsaw, Poland, 1974, p. 181.

N. J. A. Sloane, Illustration for sequence M4299 (=A007340) in The Encyclopedia of Integer Sequences (with Simon Plouffe), Academic Press, 1995.

LINKS

T. D. Noe, Table of n, a(n) for n=0..100 (using Hickerson's formula in A002387)

John V. Baxley, Euler's constant, Taylor's formula, and slowly converging series, Math. Mag. 65 (1992), 302-313.

R. P. Boas, Jr. and J. W. Wrench, Jr., Partial sums of the harmonic series, Amer. Math. Monthly, 78 (1971), 864-870.

Keneth Adrian Dagal, A Lower Bound for tau(n) for k-Multiperfect Number, arXiv:1309.3527 [math.NT]

J. Derbyshire, Rainfall Records

J. Sondow and E. W. Weisstein, MathWorld: Harmonic Number

Eric Weisstein's World of Mathematics, Harmonic Series

Eric Weisstein's World of Mathematics, High-Water Mark

FORMULA

The quotient of two successive terms of this sequence has exp(1) for limit. - Sébastien Dumortier, Jun 29 2005

a(n) = exp(n - gamma + o(1)). - Charles R Greathouse IV, Mar 10 2009

a(n) = A002387(n) for n>1. - Robert G. Wilson v, Jun 18 2015

EXAMPLE

a(2)=4 because 1/1 + 1/2 + 1/3 + 1/4 > 2.

MAPLE

ListA004080:=proc(q) local a, k, n; a:=1; print(a); k:=1;

for n from 2 to q do while a<n do k:=k+1; a:=a+1/k; od; print(k);

od; end: ListA004080(10^10); # Paolo P. Lava, Jul 03 2013

MATHEMATICA

aux[0] = 0; Do[aux[n] = Floor[Floor[Sum[1/i, {i, n}]]]; If[aux[n] > aux[n - 1], Print[n]], {n, 1, 14000}] (* José María Grau Ribas, Feb 20 2010 *)

a[0] = 0; a[1] = 1; a[n_] := k /. FindRoot[ HarmonicNumber[k] == n, {k, Exp[n - EulerGamma]}, WorkingPrecision -> 50] // Ceiling; Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Aug 13 2013, after Charles R Greathouse IV *)

PROG

(PARI) gp > t=0; n=0; for(i=1, 10^20, t+=1./i; if(t>=n, print(i, " ", t); n++)) \\ Thomas Gettys (tpgettys(AT)comcast.net), Jan 21 2007

(Haskell)

import Data.List (findIndex); import Data.Maybe (fromJust)

a004080 n = fromJust $

   findIndex (fromIntegral n <=) $ scanl (+) 0 $ map recip [1..]

-- Reinhard Zumkeller, Jul 13 2014

CROSSREFS

Apart from first two terms, same as A002387.

Sequence in context: A104743 A165993 A192312 * A027115 A077995 A276293

Adjacent sequences:  A004077 A004078 A004079 * A004081 A004082 A004083

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane, Clark Kimberling

EXTENSIONS

Terms for n >= 13 computed by Eric W. Weisstein; corrected by James R. Buddenhagen and Eric W. Weisstein, Feb 18 2001

Edited by Dean Hickerson, Apr 19 2003

More terms from Sébastien Dumortier, Jun 29 2005

a(27) from Thomas Gettys (tpgettys(AT)comcast.net), Dec 05 2006

a(28) from Thomas Gettys (tpgettys(AT)comcast.net), Jan 21 2007

Edited by Charles R Greathouse IV, Mar 24 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.