login
A003811
Order of simple Chevalley group A_6(q), q = prime power.
1
163849992929280, 67034222101339041669120, 72736898347485916060188672000, 3376566710423156250000000000000000, 35832085525362833262818017603275320524800, 3129044148368792621827017675376367700541440
OFFSET
1,1
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
FORMULA
a(n) = a(A000961(n+1),6) where a(q,n) is defined in A003793. - Sean A. Irvine, Sep 18 2015
MATHEMATICA
f[m_, n_] := Block[{g, x, y}, g[x_, y_] := x^(y (y + 1)/2) Product[x^k - 1, {k, 2, y + 1}]; g[m, n]/GCD[n + 1, m - 1]]; f[#, 6] & /@ Select[Range[2, 8], PrimePowerQ] (* Michael De Vlieger, Sep 18 2015 *)
CROSSREFS
Sequence in context: A175347 A216405 A364412 * A003804 A259034 A245721
KEYWORD
nonn,easy
EXTENSIONS
Beginning same as A003804.
a(6) from Sean A. Irvine, Sep 18 2015
STATUS
approved