login
A003809
Order of simple Chevalley group A_4(q), q = prime power.
1
9999360, 237783237120, 258492255436800, 56653740000000000, 187035198320488089600, 4638226007491010887680, 78660280796419613491200, 1952052708565059186240000, 539322992420959314658621440, 15779626219308347912355840000, 338200968038818404584356577280, 4884441266449243967839995916800
OFFSET
1,1
REFERENCES
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi.
H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 4th ed., Springer-Verlag, NY, reprinted 1984, p. 131.
FORMULA
a(n) = a(A000961(n+1),4) where a(q,n) is defined in A003793. - Sean A. Irvine, Sep 18 2015
MATHEMATICA
f[m_, n_] := Block[{g, x, y}, g[x_, y_] := x^(y (y + 1)/2) Product[x^k - 1, {k, 2, y + 1}]; g[m, n]/GCD[n + 1, m - 1]]; f[#, 4] & /@ Select[Range[2, 22], PrimePowerQ] (* Michael De Vlieger, Sep 18 2015 *)
CROSSREFS
Different from A003802.
Sequence in context: A234980 A179737 A234376 * A003802 A033425 A153751
KEYWORD
nonn,easy
EXTENSIONS
a(9)-a(12) from Michael De Vlieger, Sep 18 2015
STATUS
approved