login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003781 Expansion of theta series of {E_7}* lattice in powers of q^(1/2). 5
1, 0, 0, 56, 126, 0, 0, 576, 756, 0, 0, 1512, 2072, 0, 0, 4032, 4158, 0, 0, 5544, 7560, 0, 0, 12096, 11592, 0, 0, 13664, 16704, 0, 0, 24192, 24948, 0, 0, 27216, 31878, 0, 0, 44352, 39816, 0, 0, 41832, 55944, 0, 0, 72576, 66584, 0, 0, 67536, 76104, 0, 0, 100800 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

REFERENCES

J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 125.

M. Eichler and D. Zagier, The Theory of Jacobi Forms, Birkhauser, 1985, p. 141.

N. Elkies and B. H. Gross, Embeddings into the integral octonions, Olga Taussky-Todd: in memoriam, Pacific J. Math. 1997, Special Issue, 147-158.

LINKS

Table of n, a(n) for n=0..55.

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

Theta series is given on page 125 of Conway and Sloane.

Can be determined from A023919 (A*_7): [1] A003781(4n)=A023919(16n) [2] A003781(4n+3)=A023919(16n+12). Let A_7+[1] be the generator of A*_7/A_7, then these correspond to [1]A004008=theta(E_7)=theta(A_7)+theta(A_7+[4]), [2]A005931=theta(E_7+[1])=theta(A_7+[2])+theta(A_7+[6]) - Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), May 03 2000

Expansion of phi(q)^3 * (phi(q)^4 + 7 * phi(-q)^4) / 8 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Aug 27 2013

G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 2^(13/2) (t / i)^(7/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A004008. - Michael Somos, Aug 27 2013

a(4*n + 1) = a(4*n + 2) = 0. - Michael Somos, Jun 11 2007

a(4*n) = A004008(n), a(4*n + 3) = A005931(n). - Michael Somos, Jun 11 2007.

EXAMPLE

G.f. = 1 + 56*x^3 + 126*x^4 + 576*x^7 + 756*x^8 + 1512*x^11 + 2072*x^12 + ...

G.f. = 1 + 56*q^(3/2) + 126*q^2 + 576*q^(7/2) + 756*q^4 + 1512*q^(11/2) + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^3 (EllipticTheta[ 3, 0, q]^4 + 7 EllipticTheta[ 4, 0, q]^4) / 8, {q, 0, n}]; (* Michael Somos, Aug 27 2013 *)

PROG

(PARI) {a(n) = local(A, B, m); n++; m=n%4; n\=4; if( n<0 || m>1, 0, A = sum(k=1, sqrtint(n), 2*x^k^2, 1 + x * O(x^n)); B = subst(A, x, -x); polcoeff( if(m==0, (A^4 - B^4) * (8*A^4 - B^4) / 2 / sum(k=0, sqrtint( 4*n + 1)\2, x^(k^2 + k), x * O(x^n)), 8*A^7 - 7*A^3 * subst(A, x, -x)^4 ), n))}; /* Michael Somos, Jun 11 2007 */

(PARI) {a(n) = local(A); if( n<0, 0, A = sum(k=1, sqrtint(n), 2 * x^k^2, 1 + x * O(x^n)); polcoeff( A^3 * (A^4 + 7 * subst(A, x, -x)^4) / 8, n))}; /* Michael Somos, Aug 27 2013 */

(MAGMA) Basis( ModularForms( Gamma0(4), 7/2), 19) [1] ; /* Michael Somos, Jun 10 2014 */

CROSSREFS

Cf. A004008, A005931, A030443, A038723.

Sequence in context: A044624 A157330 A038849 * A286980 A254463 A030443

Adjacent sequences:  A003778 A003779 A003780 * A003782 A003783 A003784

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 17 03:51 EDT 2017. Contains 290631 sequences.