%I #19 Jun 25 2023 20:15:27
%S 4,48,672,8496,106944,1349760,17032800,214925952,2712031104,
%T 34221651456,431824387584,5448956749824,68757417818112,
%U 867612411420672,10947928532312064,138145948088696832
%N Number of spanning trees with degrees 1 and 3 in K_4 X P_n.
%D F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
%H F. Faase, <a href="http://www.iwriteiam.nl/Cpaper.zip">On the number of specific spanning subgraphs of the graphs G X P_n</a>, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
%H F. Faase, <a href="http://www.iwriteiam.nl/counting.html">Counting Hamiltonian cycles in product graphs</a>
%H F. Faase, <a href="http://www.iwriteiam.nl/Cresults.html">Results from the counting program</a>
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (12, 4, 48).
%F a(n) = 12a(n-1) + 4a(n-2) + 48a(n-3), n>7.
%F G.f.: 4x*(1+20x^2+12x^3+48x^5+24x^6)/(1-12x-4x^2-48x^3). [From _R. J. Mathar_, Dec 16 2008]
%K nonn
%O 1,1
%A _Frans J. Faase_