

A003765


Number of Hamiltonian cycles in W_4 X P_n.


0



1, 10, 46, 238, 1170, 5882, 29278, 146382, 730434, 3647994, 18212046, 90936494, 454029874, 2266968122, 11318785790, 56514147406, 282171551586, 1408866513082, 7034386262766, 35122279177902
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


REFERENCES

F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129154.


LINKS

Table of n, a(n) for n=1..20.
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129154.
F. Faase, Counting Hamiltonian cycles in product graphs
F. Faase, Results from the counting program


FORMULA

a(1) = 1,
a(2) = 10,
a(3) = 46,
a(4) = 238,
a(5) = 1170,
a(6) = 5882 and
a(n) = 5a(n1) + 3a(n2)  19a(n3) + 20a(n4)  4a(n5).
G.f.: x(1+5x7x^23x^3+12x^44x^5)/(15x3x^2+19x^320x^4+4x^5). [From R. J. Mathar, Dec 16 2008]


CROSSREFS

Sequence in context: A183133 A115712 A199313 * A138041 A219597 A000832
Adjacent sequences: A003762 A003763 A003764 * A003766 A003767 A003768


KEYWORD

nonn


AUTHOR

Frans J. Faase


EXTENSIONS

Added recurrence from Faase's web page.  N. J. A. Sloane, Feb 03 2009


STATUS

approved



