This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003716 Expansion of tan(sinh(x)). (Formerly M3144) 1
 1, 3, 37, 1015, 47881, 3459819, 354711853, 48961863007, 8754050024209, 1967989239505875, 543326939019354421, 180718022989699819207, 71275877445849484090393, 32890432371345908634652347, 17555593768891213894861569085 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS FORMULA a(n) = sum(k=1..n, ((-1)^(k-1)+1)/(2^k*k!)*sum(i=0..k, (-1)^i*(k-2*i)^n *C(k,i))*(sum(j=1..k, j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k,j)))). - Vladimir Kruchinin, Apr 20 2011 a(n) ~ 4 * (2*n+1)! / (sqrt(4+Pi^2) * (log((Pi + sqrt(4+Pi^2))/2))^(2*n+2)). - Vaclav Kotesovec, Feb 16 2015 MATHEMATICA Tan[ Sinh[ x ] ] (* Odd Part *) nn = 20; Table[(CoefficientList[Series[Tan[Sinh[x]], {x, 0, 2*nn+1}], x] * Range[0, 2*nn+1]!)[[n]], {n, 2, 2*nn, 2}] (* Vaclav Kotesovec, Feb 16 2015 *) PROG (Maxima) a(n):=sum(((-1)^(k-1)+1)/(2^k*k!)*sum((-1)^i*(k-2*i)^n*binomial(k, i), i, 0, k)*(sum(j!*2^(k-j-1)*(-1)^((k+1)/2+j)*stirling2(k, j), j, 1, k)), k, 1, n); [Vladimir Kruchinin, Apr 20 2011] CROSSREFS Sequence in context: A274308 A318224 A300986 * A051396 A113074 A128083 Adjacent sequences:  A003713 A003714 A003715 * A003717 A003718 A003719 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 16:20 EST 2019. Contains 319335 sequences. (Running on oeis4.)