login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003633 The sequence 2^(1-n)*a(n) is fixed (up to signs) by Stirling-2 transform.
(Formerly M3670)
174
1, -1, 1, 4, -38, -78, 5246, -11680, -2066056, 22308440, 1898577048, -48769559680, -3518093351728, 174500124820560, 11809059761527536, -1021558531563834368, -66133927485154902144, 9433326815405995274624, 578173001867228425792384 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..19.

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]

M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]

N. J. A. Sloane, Transforms

FORMULA

The e.g.f. for the latter sequence satisfies A(x) + A(e^x - 1 ) = 2.

EXAMPLE

The sequence that is fixed up to signs by STIRLING-2 is 1, -1/2, 1/4, 4/8, -38/16, -78/32, 5246/64, ...

CROSSREFS

Sequence in context: A121672 A020205 A265437 * A129310 A152110 A209486

Adjacent sequences:  A003630 A003631 A003632 * A003634 A003635 A003636

KEYWORD

sign,eigen

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

More terms from Vladeta Jovovic, Jul 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 10:30 EST 2019. Contains 319218 sequences. (Running on oeis4.)