Take any \(r \geq 1 \). Note that \(\varphi(p^r) = (p - 1)p^{r-1} \), where \(\varphi \) is A000010 and \(p \) is prime.

Theorem 1 If \(p \) is a member of A003629, i.e. an odd prime for which 2 is not a square, then

\[
2^{\varphi(p^r)/2} \equiv -1 \pmod{p^r}
\]

Proof Let \(t \) be a primitive root mod \(p^r \). Then \(2 \equiv t^k \pmod{p^r} \) for some \(k \) with \(1 \leq k < \varphi(p^r) \), and 2 is a square mod \(p \) iff 2 is a square mod \(p^r \) iff \(k \) is even. Since this is not the case, \(k \varphi(p^r)/2 \) is not divisible by \(\varphi(p^r) \), so \(2^{\varphi(p^r)/2} \equiv t^{k\varphi(p^r)/2} \neq 1 \pmod{p^r} \). On the other hand, letting \(x = 2^{\varphi(p^r)/2} \) we have \(x^2 \equiv 1 \pmod{p^r} \), and since \(x^2 - 1 = (x - 1)(x + 1) \) and only one of these can be divisible by \(p \), that implies \(x \equiv -1 \pmod{p^r} \).