login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003619 Not of form [ e^m ], m >= 1.
(Formerly M2300)
2
1, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

If 1 is excluded (of form [e^0]) then complement of A000149. - Michel Marcus, Jun 16 2013

REFERENCES

J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 11.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458.

FORMULA

a(n) = n + [ log (n + 1 + [ log (n + 1) ]) ].

MATHEMATICA

Table[n + Floor@ Log[n + 1 + Floor@ Log[n + 1]], {n, 50}] (* Michael De Vlieger, Oct 06 2017 *)

PROG

(PARI) a(n) = n + floor( log (n + 1 + floor( log (n + 1) )) ) \\ Michel Marcus, Jun 16 2013

(Haskell)

a003619 n = n + floor (log (x + fromIntegral (floor $ log x)))

            where x = fromIntegral n + 1

-- Reinhard Zumkeller, Mar 17 2015

CROSSREFS

Cf. A000195.

Sequence in context: A298420 A197354 A089399 * A216846 A288674 A183294

Adjacent sequences:  A003616 A003617 A003618 * A003620 A003621 A003622

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 13 02:38 EDT 2021. Contains 342934 sequences. (Running on oeis4.)