login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003596 Numbers of the form 2^i*11^j. 21
1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 121, 128, 176, 242, 256, 352, 484, 512, 704, 968, 1024, 1331, 1408, 1936, 2048, 2662, 2816, 3872, 4096, 5324, 5632, 7744, 8192, 10648, 11264, 14641, 15488, 16384, 21296, 22528, 29282, 30976, 32768 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A204455(11*a(n)) = 11, and only for these numbers. - Wolfdieter Lang, Feb 04 2012

LINKS

Vincenzo Librandi and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 100 terms from Librandi)

FORMULA

The characteristic function of this sequence is given by Sum_{n >= 1} x^a(n) = Sum_{n >= 1} mu(22*n)*x^n/(1 - x^n), where mu(n) is the Möbius function A008683. Cf. with the formula of Hanna in A051037. - Peter Bala, Mar 18 2019

MATHEMATICA

fQ[n_] := PowerMod[22, n, n]==0; Select[Range[40000], fQ] (* Vincenzo Librandi, Feb 04 2012 *)

PROG

(PARI) list(lim)=my(v=List(), N); for(n=0, log(lim)\log(11), N=11^n; while(N<=lim, listput(v, N); N<<=1)); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jun 28 2011

(Haskell)

import Data.Set (singleton, deleteFindMin, insert)

a003596 n = a003596_list !! (n-1)

a003596_list = f $ singleton (1, 0, 0) where

   f s = y : f (insert (2 * y, i + 1, j) $ insert (11 * y, i, j + 1) s')

         where ((y, i, j), s') = deleteFindMin s

-- Reinhard Zumkeller, May 15 2015

(MAGMA) [n: n in [1..2*10^5] | PrimeDivisors(n) subset [2, 11]]; // Vincenzo Librandi, Jun 27 2016

(GAP) Filtered([1..33000], n->PowerMod(22, n, n)=0); # Muniru A Asiru, Mar 19 2019

CROSSREFS

Cf. A025612, A025616, A025621, A025625, A025629, A025632, A025634, A025635, A108761, A003597, A107988, A003598, A108698, A003599, A107788, A108687, A108779, A108090.

Sequence in context: A320448 A115797 A242313 * A018600 A018408 A018320

Adjacent sequences:  A003593 A003594 A003595 * A003597 A003598 A003599

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 03:14 EDT 2019. Contains 323539 sequences. (Running on oeis4.)