login
Rows of Pascal's triangle written as a single number.
5

%I #33 Aug 11 2024 17:02:23

%S 1,11,121,1331,14641,15101051,1615201561,172135352171,18285670562881,

%T 193684126126843691,1104512021025221012045101,

%U 1115516533046246233016555111,1126622049579292479249522066121,11378286715128717161716128771528678131

%N Rows of Pascal's triangle written as a single number.

%C If n<=500, a(n) is prime only for a(1)=11, a(8)=18285670562881, and a(29). - _Enrique Pérez Herrero_, Jun 05 2010

%H Harvey P. Dale, <a href="/A003590/b003590.txt">Table of n, a(n) for n = 0..68</a>

%F a(n) mod 100 = 1 + 10 * (n mod 10). - _Enrique Pérez Herrero_, May 27 2010

%p a:= n-> parse(cat(seq(binomial(n,k), k=0..n))):

%p seq(a(n), n=0..15); # _Alois P. Heinz_, Jan 15 2024

%t A003590[i_Integer] := ToExpression[StringJoin[Table[ToString[Binomial[i, j]], {j, 0, i}]]] (* _Enrique Pérez Herrero_, May 27 2010 *)

%t FromDigits[Flatten[IntegerDigits/@#]]&/@Table[Binomial[i,j],{i,0,15},{j,0,i}] (* _Harvey P. Dale_, Aug 11 2024 *)

%o (PARI) A003590(i)={ my(j,a); a=""; for(j=0,i,a=Str(a,binomial(i,j)) ); return(eval(a)); } /* _Enrique Pérez Herrero_, Jun 03 2010 */

%Y Cf. A007318.

%K nonn,easy,base

%O 0,2

%A Matthew Wells (mwells(AT)nmt.edu)

%E Offset 0 from _Alois P. Heinz_, Jan 15 2024