login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003556 Numbers that are both square and tetrahedral. 3
0, 1, 4, 19600 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

A. J. J. Meyl proved in 1878 that only 1, 4 and 19600 are both square and tetrahedral. See link. [Bernard Schott, Dec 23 2012]

REFERENCES

D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 600.

D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, p. 165 (Rev. ed. 1997).

LINKS

Table of n, a(n) for n=1..4.

M. Gardner, Letter to N. J. A. Sloane, circa Aug 11 1980, concerning A001110, A027568, A039596, etc.

A. J. J. Meyl Question 1194., Nouvelles Annales de Mathématiques, 2ème série, tome 17 (1878), p. 464-467.

EXAMPLE

From Bernard Schott, Dec 23 2012: (Start)

If S(n) = n^2 and T(m) = m*(m+1)*(m+2)/6, then

-> S(1)= T(1) = 1;

-> S(2)= T(2) = 4;

-> S(140) = T(48) = 19600. (End)

MATHEMATICA

Select[Rest[FoldList[Plus, 0, Rest[FoldList[Plus, 0, Range[50000]]]]], IntegerQ[Sqrt[ # ]]&]

Intersection[Binomial[# + 2, 3]&/@Range[0, 10000], Range[0, 409000]^2] (* From Harvey P. Dale, Feb 01 2011 *)

CROSSREFS

Sequence in context: A258101 A265215 A070157 * A053015 A089210 A203037

Adjacent sequences:  A003553 A003554 A003555 * A003557 A003558 A003559

KEYWORD

nonn,fini,full

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 24 04:14 EDT 2017. Contains 292402 sequences.