login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003512 A Beatty sequence: floor(n*(sqrt(3) + 2)).
(Formerly M2622)
11
3, 7, 11, 14, 18, 22, 26, 29, 33, 37, 41, 44, 48, 52, 55, 59, 63, 67, 70, 74, 78, 82, 85, 89, 93, 97, 100, 104, 108, 111, 115, 119, 123, 126, 130, 134, 138, 141, 145, 149, 153, 156, 160, 164, 167, 171, 175, 179, 182, 186 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Chai Wah Wu, Table of n, a(n) for n = 1..10000

Aviezri S. Fraenkel, Jonathan Levitt, Michael Shimshoni, Characterization of the set of values f(n)=[n alpha], n=1,2,..., Discrete Math. 2 (1972), no.4, 335-345.

Eric Weisstein's World of Mathematics, Beatty Sequence.

Index entries for sequences related to Beatty sequences

FORMULA

a(n) = floor(n*(sqrt(3)+2)). - Michel Marcus, Jan 05 2015

For n >= 0, a(n) = 2n + largest integer m such that m^2 <= 3*n^2. - Chai Wah Wu, Oct 08 2016

From Miko Labalan, Dec 03 2016: (Start)

For n > 0, a(n) = 4*floor(n*(sqrt(3)-1)) + 3*floor(n*(2-sqrt(3))) + 3;

a(0) = 0, a(n) = a(n - 1) + A182778(n) - A182778(n - 1) - 1.

(End)

MAPLE

Digits := 60: A003512 := proc(n) trunc( evalf( n*(sqrt(3)+2) )); end;

MATHEMATICA

Table[Floor[n (Sqrt@ 3 + 2)], {n, 50}] (* Michael De Vlieger, Oct 08 2016 *)

PROG

(Python)

from gmpy2 import isqrt

def A003512(n):

    return 2*n + int(isqrt(3*n**2))  # Chai Wah Wu, Oct 08 2016

CROSSREFS

Cf. A003511 (complement), A019973 (sqrt(3)+2).

Sequence in context: A260484 A000572 A059568 * A246170 A190694 A310206

Adjacent sequences:  A003509 A003510 A003511 * A003513 A003514 A003515

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 25 08:48 EST 2020. Contains 332221 sequences. (Running on oeis4.)