login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003479 Expansion of 1/((1-x)*(1-x-2*x^3)).
(Formerly M0781)
2
1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, 755, 1282, 2175, 3686, 6251, 10602, 17975, 30478, 51683, 87634, 148591, 251958, 427227, 724410, 1228327, 2082782, 3531603, 5988258, 10153823, 17217030, 29193547, 49501194, 83935255, 142322350 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-2).

FORMULA

A003476(n+1) + A077949(n)/2 - 1/2. - Ralf Stephan, Sep 25 2004

a(n+1)-a(n) = A077949(n+1). - R. J. Mathar, Mar 22 2011

MAPLE

A003479:=1/(z-1)/(-1+z+2*z**3); [Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

CoefficientList[Series[1/((1-x)*(1-x-2*x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 12 2012 *)

CROSSREFS

Cf. A003229.

Sequence in context: A273225 A274621 A291725 * A093367 A054186 A032156

Adjacent sequences:  A003476 A003477 A003478 * A003480 A003481 A003482

KEYWORD

easy,nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 11:56 EDT 2019. Contains 324352 sequences. (Running on oeis4.)