This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003479 Expansion of 1/((1-x)*(1-x-2*x^3)). (Formerly M0781) 2
 1, 2, 3, 6, 11, 18, 31, 54, 91, 154, 263, 446, 755, 1282, 2175, 3686, 6251, 10602, 17975, 30478, 51683, 87634, 148591, 251958, 427227, 724410, 1228327, 2082782, 3531603, 5988258, 10153823, 17217030, 29193547, 49501194, 83935255, 142322350 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES D. E. Daykin and S. J. Tucker, Introduction to Dragon Curves. Unpublished, 1976. See links in A003229 for an earlier version. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 D. E. Daykin, Letter to N. J. A. Sloane, Mar 1974 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-2). FORMULA A003476(n+1) + A077949(n)/2 - 1/2. - Ralf Stephan, Sep 25 2004 a(n+1)-a(n) = A077949(n+1). - R. J. Mathar, Mar 22 2011 MAPLE A003479:=1/(z-1)/(-1+z+2*z**3); [Simon Plouffe in his 1992 dissertation.] MATHEMATICA CoefficientList[Series[1/((1-x)*(1-x-2*x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 12 2012 *) CROSSREFS Cf. A003229. Sequence in context: A273225 A274621 A291725 * A093367 A054186 A032156 Adjacent sequences:  A003476 A003477 A003478 * A003480 A003481 A003482 KEYWORD easy,nonn AUTHOR EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 25 11:56 EDT 2019. Contains 324352 sequences. (Running on oeis4.)