%I M0750 #22 Feb 07 2020 12:08:47
%S 2,3,6,7,10,19,31,34,46,79,106,151,211,214,274,331,394,631,751,919,
%T 991,1054,1486,1654,2146,2479,2599,3826,5014,5251,7459,8551,9454,
%U 10651,13666,18379,22234,32971,39274,45046,48799,61051,62386,74299,78439,84319,111094
%N Nonsquare values of m in the discriminant D = 4*m leading to a new maximum of the L-function of the Dirichlet series L(1) = Sum_{k>0} Kronecker(D,k)/k.
%C The terms a(1)-a(24) are given in Shanks's Table 6 "Hichamps, 4M = Discriminant". After the term 1654, this table is incomplete and only gives selected values. - _Hugo Pfoertner_, Feb 07 2020
%D D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H D. Shanks, <a href="/A003419/a003419.pdf">Systematic examination of Littlewood's bounds on L(1,chi)</a>, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
%Y Cf. A003419, A003420, A003521.
%K nonn
%O 1,1
%A _N. J. A. Sloane_
%E New title, a(25)-a(47) from _Hugo Pfoertner_, Feb 07 2020